
SYsteme TEchnischer COmmunikation
GRAF-SYTECO Gmbh & Co.KG * Kaiserstrasse 18 * D-78609 Tuningen

Tel: +49 7464 98660 * Fax: +49 7464 2550 * http:// www.graf-syteco.de * eMail: info@graf-syteco.de

Manual

Communication

Document: H127A1

Status: released

Issued: March 2004

GRAF-SYTECO

Manual operating panels
1 Communication

1.1 Introduction
This manual describes the manifold possibilities of the operating panels to communicate with other pan-
els or to exchange data. The number and type of the available interfaces are different from panel to panel
according to equipment and have therefore to be obtained from the documents of the appropriate panel.
The panels are originally able to communicate with controls of various manufacturers directly without any
programming effort. For controls which this spectrum does not cover, there exists at any time the possi-
bility to implement their own communication drivers.

1.2 Telegram formats
This chapter describes how to control the operating panel via the serial interface or via the CAN-bus and
which information the operating panel can transmit outward directly from the operating system. The
transferred user data are principally identical, only the telegram frame and the number of the transferred
user data bytes differ from each other.

1.2.1 Structure of the CAN telegrams
The exact structure of CAN telegrams and their telegram framework can be obtained from relevant liter-
ature to the CAN-bus. Here a schematic structure is to be shown in order to explain the function mode
of the data communication.

The identifier in the telegram framework serves only for the identification of the panel at the bus. The
number of the data bytes in the identifier is determined at 8 bytes, independent of the actually used
number of data bytes. The data bytes marked as unused should be preallocated with 0x00 according to
possibility.
With CAN telegrams all 8 user data bytes are always transferred !

1.2.2 Structure of the serial telegrams
Basically each serial telegram consists of a start-byte (STX), a data-length-code (DLN, dimension of the
data area), a panel address (ID, node address) a data area (data 0-N) as well as of the checksum (CHK).
The dimension of the data area can thereby vary between 1 and 8 bytes. Here the following telegram
structure results:

STX: Start-byte (identification 0Bhex)
DLN: Data length (from ID to DataN, inclusive)
ID: node address (its own address) = 0
Data1-N: User data
CHK: Checksum (is ascertained from the exclusive-or-linkage of the bytes "DLN"

to "DataN", respectively inclusive)

With serial telegrams the necessary data bytes are transferred only partially !
In the following tables on the individual telegram types the data bytes are deposited with grey
colour which are transferred via the serial interface.

0 1 2 3 4 5 6 7 8 9
Frame User data Frame
Identifier Data 0 Data 1 Data 2 Data 3 Data 4 Data 5 Data 6 Data 7 CRC

0 1 2 3 4 3+N 4+N
Frame User data Frame
STX DLN ID Data 0 Data 1 ... Data N CHK
- 1 -

Manual operating panels

1.2.3 Structure of the user data
The first byte in the user data (D0) is used for the encoding of the telegram type (TA). So maximum 7
bytes of user data can be transferred in a telegram

The operating panel works on a question-answer-basis. That means the control places an enquiry to the
operating panel and receives the corresponding response.
Supplementarily there are some telegrams in which the operating panel informs the control about its sta-
tus. This function can be switched off via the control.

1.3 Telegram types according to category
In the following overview the telegrams are divided into different categories and refer then to the respec-
tive description.

D0 D1 D2 D3 D4 D5 D6 D7
Telegram
type (TA)

User data in dependence on the telegram type
- 2 -

Manual operating panels

1.3.1 Image- and message call-up

1.3.2 Keys and LEDs

1.3.3 Variables

1.3.4 Status

Telegram Function (rough) TA=
MESSAGE_ON Message call-up: Message into the message batch 0x04
MESSAGE_OFF Message call-up: Message from the message batch 0x05
PAGE_ON Image call-up: Image into the image batch 0x06
REQUEST_PRIORITY Image call-up: Image with priority 0x08
PAGE_OFF Image call-up: Image from the image batch 0x07
MENU_ON The telegram activates a menu image 0x2B

Telegram Function (rough) TA=
SET_LED Switching on and off LED 0x16
REPORT_KEY_DATA Key status is reported 0x17
WRITE_KEY_CODE Key code telegram for nominal value entry 0x2A
EXECUTE_MENU Carries out a menu function, has an effect like a key

stroke
0x29

Telegram Function (rough) TA=
REQUEST_VALUE Value of an external variable is requested 0x01
SET_VALUE Value of an external variable is delivered 0x02
REPORT_VALUE Nominal value is reported to the control 0x03
REQUEST_CLOCK Read integrated real-time-clock 0x1A
REQUEST_RUNTIME Read integrated runtime-counter 0x1B
REQUEST_INTERN_VARIABLES Request value of an internal variable 0x1C
WRITE_CLOCK Set the time of the internal real-time-clock 0x1D
REPORT_CLOCK Operating panel transmits time 0x1E
REPORT_RUNTIME Operating panel transmits runtime counter 0x1F

Telegram Function (rough) TA=
REQUEST_STATUS Request status of the operating panel 0x09
REPORT_STATUS Operating panel reports status 0x0A
ENABLE_REPORT_STATUS Operating panel shall report status unrequested 0x0B
DISABLE_REPORT_STATUS Operating panel shall report status only on request 0x0C
WRITE_PARAM Modify and guard panel parameter 0x15
REQUEST_VERSION Requesting firmware version 0x18
REPORT_VERSION Firmware version is delivered 0x19
REPORT_OUTPUT_STATE The status of the message output is transmitted 0x26
REPORT_MENU_INDEX The index of a menu entry is transmitted 0x25
- 3 -

Manual operating panels

1.3.5 Log/statistics

1.3.6 Memory/text transfer

1.3.7 Cursor positioning

1.3.8 Others

1.4 Description of the telegram types
A detailed description of the individual telegram types follows from this section. In each description you
will find here the information about the function, the direction of the telegram (operating panel -> master
or master -> operating panel, whereby the master can be a PLC, a PC or e.g. also a further operating
panel) and the content of the user data. The telegram format is described and you receive an example
of each telegram type. The representation of all number values is hexadecimal, what is to be expressed
by "0x“ placed in front of each number. Example: 0x10 = decimal 16)

Telegram Function (rough) TA=
REQUEST_PROTOCOL Requesting the log memory content 0x21
REQUEST_STATISTIC Requesting the statistics memory content 0x22

Telegram Function (rough) TA=
REQUEST_MEMORY_WRITE The operating panel is informed that data follow which

are to be written into the text memory.
0x0D

DISABLE_WRITE Terminating the data transfer and RESET 0x0E
WRITE_MEMORY User data of the data transfer to the operating panel 0x0F
REQUEST_MEMORY_READ The operating panel is informed that it shall transmit

the data from the text memory.
0x10

REPORT_READ_MEMORY User data of the data transfer to the operating panel 0x11
REPORT_ERROR Error at memory functions 0x14

Telegram Function (rough) TA=
REQUEST_CURSOR_POSITION Enquires the current cursor position in the menu 0x27
WRITE_CURSOR_POSITION Positions the cursor on a nominal value/menu point 0x28
REPORT_CURSOR_POSITION Current cursor position is transmitted 0x2A

Telegram Function (rough) TA=
RESET Resetting the panel 0x12
CAN_INIT New initialisation of the CAN interface 0x2C
ACKNOWLEDGE Acknowledgement from the operating panel to various

telegrams
0x13

ASCII_TELEGRAM ASCII-data for print-out statistics, log 0x20
DRAW Drawing of lines and rectangles 0x2E
- 4 -

Manual operating panels

1.4.1 REQUEST_VALUE (0x01)

Telegram format:

Example

The variable with handle 259 is requested in the example (1x256 + 3)

1.4.2 SET_VALUE (0x02)

Telegram format:

Example

The variable with handle 16 (=0x10) is set on the value 544 (2x256 + 32).

Note:: The meaning and the number of the fields „byte 0“ to „byte 3“ depend on the data type of the value
responded via the handle. The allocation of handle / data type takes place in the editor ITE.

Function: Requests the current value of an external variables from the PLC.
The PLC has to respond with the WRITE_VALUE telegram.

Direction: Operating panel -> master
User data: Number (handle) of the requested variable as low-byte and high-byte

Binary number without preceding sign (0..65500)
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x01 Handle

low-byte
Handle
high-byte

not used (0x00)

0x01 0x03 0x01 0x00 0x00 0x00 0x00 0x00

Function: Generally the answer to the telegram REQUEST_VALUE.
The value of the requested variable is transferred. The telegram is also used here to set
up the value of the internal variable (load variable). Project-plan the difference internal/ex-
ternal variable in the project planning surface.
The operating panel recognizes then external/internal with the help of the variable-handle.

Direction: Master -> operating panel
User data: Handle: Number of the variable, binary number without preceding sign (0-65500)

Byte 0: low-grade byte of the value
Byte 1: :
Byte 2: :
Byte 3: high-grade byte of the value

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x02 Handle

low-byte
Handle
high-byte

not used
(0x00)

Byte 0 Byte 1 Byte 2 Byte 3

0x02 0x10 0x00 0x00 0x20 0x02 0x00 0x00
- 5 -

Manual operating panels

1.4.3 REPORT_VALUE (0x03)

Telegram format:

Example

In the example the value 128 for the variable with handle 37 (=0x25) is displayed.

Note:: The meaning and the number of the fields „byte 0“ to „byte 3“ depend on the data type of the value
responded via the handle. The allocation of the handle / data type takes place in the editor ITE.

1.4.4 MESSAGE_ON (0x04)

Telegram format:

Example

In the example the message 274 (1 x 256 + 18) is activated.

Function: Transferring a value to the PLC. This telegram is always transmitted from the operating
panel to the control if a nominal value has been entered or changed, or if the PLC has re-
quested the value via REQUEST_INTERN_VARIABLES.

Direction: Operating panel -> master
User data: Handle: Number of the variable, binary number without preceding sign (0-65500)

Byte 0: low-grade byte of the nominal value/variable
Byte 1: :
Byte 2: :
Byte 3: high-grade byte of the nominal value/variable

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x03 Handle

low-byte
Handle
high-byte

not used 0x00 Byte 0 Byte 1 Byte 2 Byte 3

0x03 0x25 0x00 0x00 0x80 0x00 0x00 0x00

Function: Activates a message
Direction: Master -> operating panel
User data: Message number: 16-bit number, 1-9999, without preceding sign
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x04 Message

number
low-byte

Message
number
high-byte

not used (0x00)

0x04 0x12 0x01 0x00 0x00 0x00 0x00 0x00
- 6 -

Manual operating panels

1.4.5 MESSAGE_OFF (0x05)

Telegram format:

Example

In the example the message 3 is deactivated.

1.4.6 PAGE_ON (0x06)

Telegram format:

Example

In the example the image 1024 is activated.

1.4.7 PAGE_OFF (0x07)

Telegram format:

Example

In the example the image 7 is deactivated.

Function: Deactivates a message
Direction: Master -> operating panel
User data: Message number: 16-bit number, 1-9999, without preceding sign
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x05 Message

number
low-byte

Message
number
high-byte

not used (0x00)

0x05 0x03 0x00 0x00 0x00 0x00 0x00 0x00

Function: Activates an image
Direction: Master -> operating panel
User data: Image number: 16-bit number, 1-9999, without preceding sign
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x04 Image number

low-byte
Image number
high-byte

not used (0x00)

0x06 0x04 0x00 0x00 0x00 0x00 0x00 0x00

Function: Deactivates an image
Direction: Master -> operating panel
User data: Image number: 16-bit number, 1-9999, without preceding sign
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x07 Image number

low-byte
Image number
high-byte

not used (0x00)

0x07 0x12 0x07 0x00 0x00 0x00 0x00 0x00
- 7 -

Manual operating panels

1.4.8 REQUEST_PRIORITY (0x08)

Telegram format:

Example

In the example the image No. 100 with priority is activated.

1.4.9 REQUEST_STATUS (0x09)

Function: With this telegram the PLC interrupts all running activities at the operating panel and indi-
cates an image as priority image.

Direction: Master -> operating panel
User data: Image number: 16-bit number, 1-9999, without preceding sign
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x08 Image number

low-byte
Image number
high-byte

not used (0x00)

0x08 0x68 0x00 0x00 0x00 0x00 0x00 0x00

Function: With this telegram the PLC can enquire the current status of the operating panel. It enables
the query of key-, LED- and panel status.
The operating panel responds accordingly with the telegrams
REPORT_KEY_DATA (key- or LED status),
REPORT_STATUS (panel status) or
REPORT_OUTPUT_STATE (message output)

Direction: Master -> operating panel
User data: Type of the status data to be queried

00 hex --> panel status (response: REPORT_STATUS)
01 hex --> keyboard status (key 1 - 32) (response: REPORT_KEY_DATA)
02 hex --> keyboard status (key 33 - 64) (response: REPORT_KEY_DATA)
03 hex --> LED status (LED 1 - 32) (response: REPORT_KEY_DATA)
04 hex --> LED status (LED 33 - 64) (response: REPORT_KEY_DATA)
05 hex --> status message outputs (response: REPORT_OUTPUT_STATE)

DLN 3
- 8 -

Manual operating panels

Telegram format:

Example

In the example the status of the keys 1-32 is queried. The telegram REPORT_KEY_DATA would be
transmitted from the operating panel as response.

1.4.10 REPORT_STATUS (0x0A)

Telegram format:

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x09 Mode not used (0x00)

0x09 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Function: This telegram is dispatched from the operating panel to the PLC and can be used from the
PLC for the detection of the operating panel status. The telegram is always dispatched by
the operating panel when a status information in the operating panel changes or the tele-
gram REQUEST_STATUS is received.
If DISABLE_REPORT_STATUS has been received, then the telegram is transmitted only
upon request REQUEST_STATUS.

Direction: Operating panel -> master
User data: Number of the image just displayed, number of the message just displayed, key- and panel

status
Byte 1,2: Image number: 16 bits, 1-9999, without preceding sign
Byte 3,4: Message number: 16 bits, 1-9999, without preceding sign
Byte 5: Key status

Bit0 = not used
Bit1 = ESC
Bit2 = arrow on the left
Bit3 = arrow on the right
Bit4 = arrow downwards
Bit5 = arrow upwards
Bit6 = ENTER
Bit7 = not used

Byte 6: Operating panel status (values for bits 0 to 4, bits 5 to 7 are reserved)
0: not defined (error !)
1: Passive status.
2: Browsing images
3: Browsing batch images
4: Browsing messages
5: Selecting menu entry
6: Selecting nominal value
7: Editing nominal value with number input
8: Editing nominal value with step-value processing
9: Acknowledging message
10: Browsing the log
11: Browsing statistics
12-31: not defined (error !)

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x09 Image number

low-byte
Image number
high-byte

Message
number
low-byte

Message
number
high-byte

Key status Panel status not used
- 9 -

Manual operating panels

Example

In the example the operating panel reports:
• Image 261 is displayed,
• Message 4 is displayed
• Key 3 is pressed
• The panel is in the status "select menu entry", that means the cursor is on a menu point.

1.4.11 ENABLE_REPORT_STATUS (0x0B)

Telegram format:

Example

The function REPORT_STATUS is activated in the example. The operating panel transmits immediately
a REPORT_STATUS - telegram with a change of the panel status.

Note:: Changes of the key status (key pressed/released) are not reported via the REPORT_STATUS
telegram, but via the telegram REPORT_KEY_DATA.
Switching off the keyboard telegrams takes place with the project planning software ITE.

1.4.12 DISABLE_REPORT_STATUS (0x0C)

Telegram format:

Example

The function DISABLE_REPORT_STATUS is executed in the example.

Note:: Changes of the key status (key pressed/released) are not reported via the REPORT_STATUS
telegram, but via the telegram REPORT_KEY_DATA.
are not affected by this and are transmitted further.

0x0A 0x05 0x01 0x04 0x00 0x04 0x05 0x00

Function: The automatic transmitting when changing the status is switched on. The operating panel
transmits now unrequested with each status modification a REPORT_STATUS telegram

Direction: Master -> operating panel
User data: none
DLN 2

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0B not used (0x00)

0x0B 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Function: The automatic transmitting when changing the status is switched off. If the status of the
operating panel changes, this is not reported to the control any longer. It has to query the
status of the operating panel via REQUEST_STATUS.

Direction: Master -> operating panel
User data: none
DLN 2

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0C not used (0x00)

0x0C 0x00 0x00 0x00 0x00 0x00 0x00 0x00
- 10 -

Manual operating panels

1.4.13 REQUEST_MEMORY_WRITE (0x0D)

Telegram format:

IMPORTANT NOTE !
The use of this telegram requires exact knowledge about the internal memory allocation of the operating
panel. If this telegram is used wrongly, then this can lead to malfunctions of the panel. The user project
has then to be booted up again into the panel with the project-planning software. The operating panel is
switched into the "terminal ready for upload"-status by this telegram. Users, who use the SENDDA-
TA.DAT data generation find this telegram in the download data flow.

1.4.14 DISABLE_WRITE (0x0E)

Telegram format:

CAUTION !
Observe also the note on REQUEST_MEMORY_WRITE. The telegram terminates the status "terminal
ready for upload" triggered by REQUEST_WRITE_MEMORY or REQUEST_MEMORY_READ.

1.4.15 WRITE_MEMORY (0x0F)

Function: With this telegram the write lockout of the installed text/program memory is cleared as well
as address and number of the bytes to be written are announced

Direction: Master -> operating panel
User data: Initial address of the area to be written and number of the bytes to be written

Byte 1: Bank number (memory page) of the area to be written
Byte 2,3: Address bits A0-A7 and A8-A15 for area start
Byte 4,5: Number of data bytes (low-byte and high-byte)
Byte 6,7: Clear the write protection of the memory and have to be transferred as de-
scribed below

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0D Bank number Start address

low-byte
Start address
high-byte

Number of
bytes low-byte

Number of
bytes high-
byte

0xE5 0xAA

Function: With this telegram the write lockout of the installed text/program memory is set and the
panel is reset (RESET)

Direction: Master -> operating panel
User data: The data bytes 1-7 have to be filled with the values specified below. This serves for the

backup of the telegram, because the telegram is accepted only if all data bytes have been
received in such a way.

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0E 0xD8 0x47 0x33 0xE5 0x4C 0xAA 0x29

Function: With this telegram the data to be written are transferred. Five bytes of user data are trans-
ferred per telegram.

Direction: Master -> operating panel
User data: Byte 1,2: Running telegram number (low- and high-byte)

Bytes 3-7: 5 bytes of data to be written
- 11 -

Manual operating panels

Telegram format:

CAUTION !
Observe also the notes to REQUEST_WRITE_MEMORY and DISABLE_WRITE

1.4.16 REQUEST_MEMORY_READ (0x10)

Telegram format:

NOTE!
The use of this telegram is only useful if the internal memory structure of the operating panel is well
known. The operating panel goes to "terminal ready for upload" and transmits the requested data via
REPORT_READ_MEMORY. The data transfer is terminated via the telegram „DISABLE_WRITE".

1.4.17 REPORT_READ_MEMORY (0x11)

Telegram format:

1.4.18 RESET (0x12)

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0F serial number

low-byte
serial number
high-byte

Data byte 0 Data byte 1 Data byte 2 Data byte 3 Data byte 4

Function: With this telegram the content of the memory in the operating panel can be read out
Direction: Master -> operating panel
User data: Initial address of the area to be read and number of the bytes to be read

Byte 1: Bank number (memory page) of the area to be read
Byte 2,3: Address bits A0-A7 and A8-A15 for area start
Byte 4,5: Number of data bytes low-byte and high-byte
Byte 6,7: Clear the write protection of the memory and it has to be transferred as de-
scribed below

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x0E 0xD8 0x47 0x33 0xE5 0x4C 0xAA 0x29

Function: With this telegram the operating panel responds to a read enquiry
REQUEST_MEMORY_READ

Direction: Operating panel -> master
User data: Byte 1,2: Serial telegram number; low- and high-byte first telegram has No. 1 (!)

Bytes 3-7: 5 bytes of read data

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x11 serial number

low-byte
serial number
high-byte

Data byte 0 Data byte 1 Data byte 2 Data byte 3 Data byte 4

Function: With this telegram the operating panel is "restarted". The firmware behaves thereby in
such a way as if the voltage is switched off and on again

Direction: Master -> operating panel
User data: none
DLN 2
- 12 -

Manual operating panels

Telegram format:

1.4.19 ACKNOWLEDGE (0x13)

Telegram format:

1.4.20 REPORT_ERROR (0x14)

Telegram format:

Example

In the example it is reported that the telegram REQUEST_MEMORY_WRITE has been received, but has
an invalid content.

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x12 not used (0x00)

Function: With this telegram the operating panel acknowledges the telegrams
RESET, REQUEST_MEMORY_READ,
REQUEST_MEMORY_WRITE,
WRITE_MEMORY and
DISABLE_WRITE.
The ACKNOWLEDGE - telegram is, besides, used for signalling the operational standby
after voltage return or watchdog error.

Direction: Operating panel -> master
User data: none
DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x13 not used (0x00)

Function: With this telegram the operating panel informs the PLC about the occurrence of an error.
Direction: Operating panel -> master
User data: Error code:

0, 1: Bus off (probable cable problem)
2: Communication error (communication error without data loss)
3: Overrun (data telegrams have been lost)
10: REQUEST_MEMORY_WRITE was faulty
11: DISABLE_WRITE was faulty
12: Buffer overrun (WRITE_MEMORY)
13: Write protection is active (WRITE_MEMORY)
14: WRITE_MEMORY without REQUEST_MEMORY_WRITE
15: Wrong telegram number (WRITE_MEMORY)
16: REQUEST_MEMORY_READ was faulty
50: Error when writing the project data. Probably the flash-memory is defective.

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x14 Error code not used (0x00)

0x14 0x0A 0x00 0x00 0x00 0x00 0x00 0x00
- 13 -

Manual operating panels

1.4.21 WRITE_PARAM (0x15)
Telegram format:

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x15 PA Data 0 Data 1 Data 2 Data 3 Data 4 Data 5

Function: With this telegram the PLC can guard and modify different panel parameters of the oper-
ating panel.
Caution: The settings are not saved in the flash and have thus to be set always again in
the initialization routine !

Direction: Master -> operating panel
DLN PA Parameteterize data dependent on field PA
4 0 set global soft-key mask for menu keys

Data 0: Bit 0 is assigned to key 0, Bit 1-Key 1, ...
Bit=0: no soft-key function of the key
Bit=1: key has soft-key function

4 1 Set contrast
Data 0 = 0-23, whereby 23 = maximum contrast (decimal)

2 Set background lighting.
Data 0 = 0-7, whereby 7 = maximum brightness

3 (only up to TOS IO034S00) set status of the status line
Data 0 = 0: status line enabled (faded in)
Data 0 = 1: Status line disabled (faded out)
Data 0 = 2: Image values (local parameters defined in the image are valid)

4 only up to TOS IO034S00) set line of the status line
Data 0 = 0-7

5 Adjust scrolling time of the active messages
Data 0 = 0: no scrolling function.
Data 0=1-32: scrolling time in sec.

6 Adjust scrolling time of the active images
Data 0 = 0: no scrolling function.
Data 0=1-32: scrolling time in sec.

7 Parameterize the allocation of the menu keys
Data 0=Key number of the key ESC
Data 1=Key number of the key "arrow on the left"
Data 2=Key number of the key "arrow on the right"
Data 3=Key number of the key "arrow downwards"
Data 4=Key number of the key "arrow upwards"
Data 5=Key number of the key Enter

8 Set/reset message output
Data 0 = 0: reset message output
Data 0 = 1: activate message output

9 Switching on/off function "automatic nominal value transmitting" in the status
"nominal value processing
with step function".
If the function is activated, then with each key stroke of the "up/down" keys
the current nominal value is transmitted to the control.
Data 0 = 0: function is switched off
Data 0 = 1: function is activated, with each key stroke the current nominal value
is transmitted with the answer data telegram.
- 14 -

Manual operating panels
Example

The panel is switched over to summer time in the example.

10 Set keyboard layout or for optional PS/2 keyboard.
Data 1=0 American allocation (US-American)
Data 1=1 German allocation
Data 1=2 French allocation
Data 1=3 English allocation
Data 1=4 Italian allocation
Data 1=5 Spanish allocation
Data 1=6 Swedish/Finnish allocation
Data 1=7 Belgian allocation
Data 1=8 Danish allocation
Data 1=9 Norwegian allocation
Data 1=10 Swiss/German and French allocation
Data 1=11 Portuguese allocation
Keyboard layouts - see manual: Operating and watching

11 Switching over font.
Data 0=Bank number in which the font is
! Do not use this function, it exists only for reason of compatibility!

12 Set flash cycle in 10 ms steps.
D0=low-byte
D1=high-byte

13 Switch over time zone
Data 0=0:Winter time
Data 0=1:Summer time
Data 0=2:do not use any time zone

14 Update of the variables in the display:
Data 0 = 0: edit only if its value modifies
Data 0 = 1: edit again with each "set value"-telegram

15 Buzzer On / Off
Data 0=Mode
Data 1=Buzzer ON-Time in 10ms Steps
Data 2=Buzzer OFF-Timer in 10ms Steps
Data 3=Count

Mode = 0 Buzzer is switched off, On- and Off-Time and Count are ignored.
Mode = 1 Buzzer is on, quiet
Mode = 3 Buzzer is on, loud
If Mode is <> 0 and On- and Off-Time both are = 0 the buzzer stays on
If Mode is <> 0 and On-Time only is <> 0, the buzzer is on for exactly this time

(„Single shot“).
If Mode is <> 0 and On- and Off-Time both are <> 0, the buzzer runs periodically.

In this case only Count is used, and the buzzer beeps Count times

0x15 0x0D 0x01 0x00 0x00 0x00 0x00 0x00
- 15 -

Manual operating panels

1.4.22 SET_LED (0x16)

Telegram format:

Example

The LEDs 1, 2, 5 and 6 are switched on, the LEDs 3, 4, 7 and 8 are switched off in the example.

Function: With this telegram the PLC can control the keyboard-LEDs of the operating panel.
Direction: Master -> operating panel
DLN
3
5
5
5
4
4

CTRL = control parameter:
0 --> reset all LEDs
1 --> LED-mask with the transferred value AND-link
2 --> LED-mask with the transferred value OR-link
3 --> set LED-mask with the transferred value
4 --> set individual LED
5 --> reset individual LED

Number:
LED-mask-number (0...7) for CTRL=1...3:

0=LEDs 1-8 (bit-coded)
1=LEDs 9..15
...
7= LEDs 57-64

LED-number (1-64), for CTRL= 4+5
1=LED 1 ... 64=LED 64

Value:
Mask value (bit-oriented), for CTRL = 1-3

DLN 3..5 depending upon function CTRL

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x16 CTRL Number Value not used (0x00)

0x16 0x03 0x00 0x33 0x00 0x00 0x00 0x00
- 16 -

Manual operating panels

1.4.23 REPORT_KEY_DATA (0x17)

Telegram format:

Example

It is reported in the example that key 3 has been pressed.

Subsequently a listing of the key numbers:

Function: With this telegram the operating panel transmits the key or LED status to the PLC This
takes place either on request of the PLC with a REQUEST_STATUS telegram, or auto-
matically when modifying the key status, provided this function has been switched on with
the ITE.

Direction: Operating panel -> master
User data: CTRL = control parameter:

0 --> transmitting of status and number of an individual key
1 --> transmitting the key status of the keys 1-32 (TA0-TA3)
2 --> transmitting the key status of the keys 33-64 (TA0-TA3)
3 --> transmitting the key status of the keys 1 - 32 (TA0-TA3)
4 --> transmitting the key status of the keys 1 - 32 (TA0-TA3)

Number: valid for CTRL=0
contains the key number (bits 0-6),
Bit 7 = status (pressed/released)
Exp: number=0A hex -->key 10 has been pressed

number=8A hex -->key 10 has been released

TA0 to TA7:valid for CTRL=1 to 4
Status bytes of the keys or key LEDs (bit-oriented)
TA0 --> Keys/LEDs 1-8
TA0 --> Keys/LEDs 9-15
...
TA0 --> Keys/LEDs 57-64

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x17 CTRL Number not used

(0x00)
TA0 / TA4 TA1 / TA5 TA2 / TA6 TA3 / TA7

0x17 0x00 0x03 0x00 0x04 0x00 0x00 0x00

ITS/AT 61/67
1-48 TA0 to TA5 corresponds to the function keys F1 - F48

65(0x41) TA6 bit 0 not used
66(0x42) TA6 bit 1 Key ESC
67(0x43) TA6 bit 2 "arrow on the left" / or "number 4" (double alloca-

tion)
68(0x44) TA6 bit 3 "arrow on the right" / or "number 6" (double alloca-

tion)
69(0x45) TA6 bit 4 "arrow downwards" / or "number 2" (double alloca-

tion)
70(0x46) TA6 bit 5 "arrow upwards" / or "number 8" (double allocation)
71(0x47) TA6 bit 6 Key ENTER
- 17 -

Manual operating panels
72(0x48) TA6 bit 7 not used
73(0x49) TA7 bit 0 Key "number 0"
74(0x4A) TA7 bit 1 Key "number 1"
75(0x4B) TA7 bit 2 Key "number 3"
76(0x4C) TA7 bit 3 Key "number 5"
77(0x4D) TA7 bit 4 Key "number 7"
78(0x4E) TA7 bit 5 Key "number 9"
79(0x4F) TA7 bit 6 Key "decimal point"
80(0x50) TA7 bit 7 Key "+/-"

ITS/AT 62/63/68/72/78
1-64 TA0 to TA7 corresponds to the function keys F1 - F64
2-7 TA0 bit 1-6 possess a double function corresponding their def-

inition as menu or function keys
Key F2-F7 defined as menu keys:
2(0x02) TA0 bit 1 Key ESC
3(0x03) TA0 bit 2 "arrow on the left"
4(0x04) TA0 bit 3 "arrow on the right"
5(0x05) TA0 bit 4 "arrow downwards"
6(0x06) TA0 bit 5 "arrow upwards"
7(0x07) TA0 bit 6 Key ENTER

ITS/AT 71/77
1-40 TA0 to TA4 corresponds to the function keys F1 - F40
41(0x29) TA5 bit 0 not used
42(0x2A) TA5 bit 1 Key ESC
43(0x2B) TA5 bit 2 "arrow on the left"
44(0x2C) TA5 bit 3 "arrow on the right"
45(0x2D) TA5 bit 4 "arrow downwards"
46(0x2E) TA5 bit 5 "arrow upwards"
47(0x2F) TA5 bit 6 Key ENTER
48(0x30) TA5 bit 7 Key BACKSPACE
49(0x31) TA6 bit 0 Key "number 0"
50(0x32) TA6 bit 1 Key "number 7"
51(0x33) TA6 bit 2 Key "number 8"
52(0x34) TA6 bit 3 Key "number 9"
53(0x35) TA6 bit 4 Key "number 4"
54(0x36) TA6 bit 5 Key "number 5"
55(0x37) TA6 bit 6 Key "number 6"
56(0x38) TA6 bit 7 Key "number 1"
57(0x39) TA7 bit 0 not used
58(0x3A) TA7 bit 1 Key "number 2"
59(0x3B) TA7 bit 2 Key "number 3"
60(0x3C) TA7 bit 3 Key "decimal point"
61(0x3D) TA7 bit 4 Key "+/-"
62(0x3E) TA7 bit 5 not used
63(0x3F) TA7 bit 6 not used
64(0x40) TA7 bit 7 not used
- 18 -

Manual operating panels

1.4.24 REQUEST_VERSION (0x18)

Telegram format:

Example

The field "userdata" is called from place 0 (2+0) in the example.

1.4.25 REPORT_VERSION (0x19)

Telegram format:

Example

The operating panel reports in the example that the string "MV1.00" is in the field "userdata".

Function: With this telegram the PLC can request the operating panel version numbers. Both
firmware and user version state (field USERDATA) can be queried. The response occurs
with the telegram REPORT_VERSION.

Direction: Master -> operating panel
User data: Control parameter CTRL:

CTRL=0: Request designation of the BIOS-version
CTRL=1: Request designation of the TOS-version
CTRL=2+n: Request version designation of the data structure from places

(field USERDATA)
DLN 3

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x18 CTRL not used (0x00)

0x18 0x02 0x00 0x00 0x00 0x00 0x00 0x00

Function: With this telegram the operating panel transmits its version number to the PLC (ASCII-
string, 7 digits). Is the response to the telegram REQUEST_VERSION.

Direction: Operating panel -> master
User data: requested version number as ASCII-string ASCII 0 .. ASCII 6

Bxxxyzz: BIOS-version
Oxxxyzz: TOS-version
Dnnnnnn: Data-version (USERDATA)

xxx = Program state
y = Special designation
zz = Special number
nnnnnn = arbitrary ASCII-signs

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x19 ASCII 0 ASCII 1 ASCII 2 ASCII 3 ASCII 4 ASCII 5 ASCII 6

0x19 ’D’ ’M’ ’V’ ’1’ ’.’ ’0’ ’3’
- 19 -

Manual operating panels

1.4.26 REQUEST_CLOCK (0x1A)

Telegram format:

1.4.27 REQUEST_RUNTIME (0x1B)

Telegram format:

1.4.28 REQUEST_INTERN_VARIABLES (0x1C)

Telegram format:

Example

The value of the variable with handle 260 is requested in the example (4 + 256 * 1).

Function: Requesting time and date of the real-time clock. The operating panel responds to this re-
quest with the REPORT_CLOCK - telegram. Note: If the panel is not equipped with real-
time clock, then a REPORT_CLOCK telegram is, however, generated, but this contains
incidental data.

Direction: Master -> operating panel
User data: none
DLN 2

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1A not used (0x00)

Function: Requesting the internal time of runtime (total switching-on time of the panel). The operat-
ing panel replies with the REPORT_RUNTIME telegram.

Direction: Master -> operating panel
User data: none
DLN 2

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1B not used (0x00)

Function: Requesting an internal variable value ("internal variables" are variables saved in the oper-
ating panel). The request is answered with the REPORT_VALUE telegram.

Direction: Master -> operating panel
User data: Handle: Variable number (0-65500)
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1C Handle

low-byte
Handle
high-byte

not used (0x00)

0x1C 0x04 0x01 0x00 0x00 0x00 0x00 0x00
- 20 -

Manual operating panels

1.4.29 WRITE_CLOCK (0x1D)

Telegram format:

Example

Date becomes in the example: 12.05.2001, time 14:24:32, weekday 2 adjusted.

1.4.30 REPORT_CLOCK (0x1E)

Telegram format:

Example

The operating panel reports in the example date 17.11.2000, time 15:02:16, weekday 5.

Function: Setting time and date of the real-time clock.
Direction: Master -> operating panel
User data: Date/time to be set in the BCD format (!)

TT: day
MM: month
JJ: year
HH: hour
MM: minute
SS: second
DW: weekday 0..6

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1D DD MM JJ HH MM SS DW

0x1D 0x12 0x05 0x01 0x14 0x24 0x32 0x02

Function: Response-telegram to the "REQUEST_CLOCK" telegram. The operating panel transmits
date and time of the internal real-time clock

Direction: Operating panel -> master
User data: Current date and time in the BCD-format (!)

TT: day
MM: month
JJ: year
HH: hour
MM: minute
SS: second
DW: weekday 0..6

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1E DD MM JJ HH MM SS DW

0x1E 0x17 0x11 0x00 0x15 0x02 0x16 0x05
- 21 -

Manual operating panels

1.4.31 REPORT_RUNTIME (0x1F)

Telegram format:

Example

The run-time is reported in the example with 1228835 seconds (corresponds to 341 hours, 20 minutes
and 35 seconds).

1.4.32 ASCII_TELEGRAM (0x20)

Telegram format:

Example

The string "message 1 leaves" with line end and carriage return is transmitted in the example.

Function: Response-telegram to the "REQUEST_RUNTIME" telegram. The operating panel trans-
mits its operating hours time as number of seconds.

Direction: Operating panel -> master
User data: Operating time in seconds

Time 0: Low-byte of the operating time
Time 1:
...
Time 4: High-byte of the operating time

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x1F Time 0 Time 1 Time 2 Time 3 Time 4 not used (0x00)

0x1F 0x23 0xC0 0x12 0x00 0x00 0x00 0x00

Function: The telegram type ASCII_TELEGRAM is a multiplex telegram, consisting of several tele-
grams for transmitting larger ASCII blocks. It is used e.g. for the log- and statistics print-out.

Direction: Operating panel -> master
User data: Data in the ASCII format (e.g. for print-outs)

LN: Number of the ASCII-signs sent in the telegram (0..6)
LN=0 identifies the end of the transfer of ASCII-signs. In this case
in ASCII 0 and ASCII 1 (16 bits) the number of the transferred telegrams
exclusive the telegram with LN=0 is transmitted

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x20 LN ASCII 0 /

Telegrams
low-byte

ASCII 1 /
Telegrams
high-byte

ASCII 2 ASCII 3 ASCII 4 ASCII 5

0x20 0x06 ’M’ ’e’ ’l’ ’d’ ’u’ ’n’
0x20 0x06 ’g’ ’ ’ ’1’ ’ ’ ’g’ ’e’
0x20 0x04 ’h’ ’t’ 0x0D 0x0A 0x00 0x00
0x20 0x00 0x03 0x00 0x00 0x00 0x00 0x00
- 22 -

Manual operating panels

1.4.33 REQUEST_PROTOCOL (0x21)

Telegram format:

Example

The log print-out from Entry No. 64 for the image 7 in the ASCII-format on the CAN-interface is released
in the example.

Function: Request to print out the log. The operating panel answers with ASCII-telegrams from the
start of the print process.

Direction: Master -> operating panel
User data: Specifications on the format of the print-out

CTRL: Log-command
0=reset log memory
1=transmit complete log
2=only entries of an image (Image No. in NR)
3=only entries of a message (Message No. in NR)
4=only entries with a certain status
5=only entries of a variable (No. in NR)
6=abort print
7=log variable (number is in NR)

OUTPUT: output medium of the log print-out
0=print is transmitted to the printer determined by ITE
1=output on the serial interface
2=output on the CAN-interface

FORMAT: output format of the log print-out
0=ASCII print-out (the complete text is printed out)
1=Binary print-out (only image/mess/Var-No. is printed out)

Serial: number of the log entry from which the print-out is started.
If 0, then it is started from the entry printed last

No: image-, message number or variable handle
(only valid, if CTRL = 2,3,5)

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x21 CTRL OUTPUT Format LFD low-byte LFD high-byte NO low-byte NO high-byte

0x21 0x02 0x02 0x00 0x40 0x00 0x07 0x00
- 23 -

Manual operating panels

1.4.34 REQUEST_STATISTIC (0x22)

Telegram format:

Examplel

The statistics print/out for message 1 in the ASCII-format is released in the example on the printer ad-
justed in the project.

1.4.35 REPORT_MENU_INDEX (0x25)

Telegram format:

Example

The operating panel transmits the menu index 5 in the example.

Function: Request for printing out the statistics. The operating panel answers with ASCII-telegrams
from the start of the print process.

Direction: Master -> operating panel
User data: Specifications on the format of the print-out

CTRL: Statistics command
0=reset statistics memory
1=transmit complete statistics
2=only statistics of a group (group number in NR)
3=only statistics of an image (Image number in NR)
4=only statistics of a message (message number in NR)
5=abort print

OUTPUT: output medium of the log print-out
0=print is transmitted to the printer determined with ITE
1=output on the serial interface
2=output on the CAN-interface

FORMAT: output format of the log print-out
0=ASCII print-out (the complete text is printed out)

No: image-, message number or variable handle
(only valid, if CTRL = 2,3,4)

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x22 CTRL OUTPUT Format NR Low-Byte NR High-Byte not used (0x00)

0x22 0x04 0x00 0x00 0x01 0x00 0x00 0x00

Function: Transmits the menu index to the PLC if an appropriate menu point has been selected with
"ENTER".

Direction: Operating panel -> master
User data: Index of the menu point (16 bits)
DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x25 INDEX

ow-byte
INDEX
high-byte

not used (0x00)

0x25 0x05 0x00 0x00 0x00 0x00 0x00 0x00
- 24 -

Manual operating panels

1.4.36 REPORT_OUTPUT_STATE (0x26)

Telegram format:

Example

The operating panel reports in the example the output as set.

1.4.37 REQUEST_CURSOR_POSITION (0x27)

Telegram format:

Example

The cursor position is enquired in the example and the transmission automatic is switched on.

Function: Transmits the status of the report output. This telegram is requested via the
REQUEST_STATUS with field mode=0x05.

Direction: Operating panel -> master
User data: Status of the output

OUTPUT=0: output is not set
OUTPUT=1: output is set

DLN 3

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x26 OUTPUT not used (0x00)

0x26 0x01 0x00 0x00 0x00 0x00 0x00 0x00

Function: Enquires the current cursor position in the menu
Direction: Master -> operating panel
User data: CTRL: Status of the transmission automatic

0: The current cursor position is transmitted with the REPORT_CURSOR_POSITION tel-
egram

once, then not any longer. (Automatic off)
1: The current cursor position is transmitted with the REPORT_CURSOR_POSITION

telegram. Additionally a transmission automatic is switched on, which outputs with each
modification of the cursor position a REPORT_CURSOR_POSITION
telegram.

DLN 3

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x27 CTRL not used (0x00)

0x27 0x01 0x00 0x00 0x00 0x00 0x00 0x00
- 25 -

Manual operating panels

1.4.38 WRITE_CURSOR_POSITION (0x28)

Telegram format:

Example

The cursor is positioned in the example on a menu option with function "transmitting menu index 10".

1.4.39 EXECUTE_MENU (0x29)

Telegram format:

Function: Positions the cursor on a menu option/nominal value if a telegram of an appropriate nom-
inal value/menu option is available. Otherwise no modification of the cursor takes place.

Direction: Master -> operating panel
User data: Position of the cursor is indicated by the mode

MODE = 0,1: XY-positioning (line/column)
Data 0:X-position (column of the cursor- character-oriented, not graphical)
DATA 1:Y-position (column of the cursor- character-oriented, not graphi-

cal)

MODE = 2: Positioning on variable handle (nominal value)
Data 0:Variable handle low-byte
DATA 1:Variable handle high-byte

MODE = 3: Positioning on menu option
Data 0:Image number/menu index... low-byte (corresponding to DATA 2)
DATA 1:Image number/menu index... high-byte (corresponding to DATA

2)
DATA 2:Function of the menu option
0= call up an image
1= go back in the menu
2= global abortion
3= terminate nominal value entry with saving, then menu image call-up
4= terminate nominal value entry with saving, then menu image call-up
5= menu index output (transmitting index value)
6= menu index output with global abortion
7= pass on menu index to KOP

Remark:
The cursor is positioned only then if the panel is in one of the statuses "passive status",
"menu selection" or "nominal value entry" and a menu option and/or a nominal value is in
the image.

DLN 6

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x28 MODE DATA 0 DATA 1 DATA 2 not used (0x00)

0x28 0x03 0x0A 0x00 0x05 0x00 0x00 0x00

Function: The telegram carries out a menu function so as if a menu key were pressed
Direction: Master -> operating panel
User data: CODE: number of the simulated key
DLN 3

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x29 CODE not used (0x00)
- 26 -

Manual operating panels

Example

The key "ENTER" is carried out in the example per CAN_telegram at the operating panel series ITS/AT
61/67.

1.4.40 REPORT_CURSOR_POSITION (0x2A)

Telegram format:

Example

The operating panel reports in the example the cursor on a nominal value with Handle 32.

0x29 0x47 0x0A 0x00 0x05 0x00 0x00 0x00

Function: The current cursor position is transmitted
Direction: Operating panel -> master
User data: Position of the cursor

MODE = 0: invalid, no cursor adjustable
MODE = 1: Cursor position is reported as XY-value (line/column)

DATA 0: X-position (column of the cursor - character-oriented, not graphical)
DATA 1: Y-position (line of the cursor - character-oriented, not graphical)

MODE = 2: cursor position is reported as variable handle (is on nominal value)
DATA 0: Variable handle low-byte
DATA 1: Variable handle high-byte

MODE = 3: cursor position is reported as menu option
DATA 0: Image number/menu index... low-byte (corresponding to DATA 2)
DATA 1: Image number/menu index... high-byte (corresponding to DATA 2)
DATA 2: Function of the menu option
0= call up an image
1= go back in the menu
2= global abortion
3= terminate nominal value entry with saving, then menu image call-up
4= terminate nominal value entry with saving, then menu image call-up
5= menu index output (transmitting index value)
6= menu index output with global abortion
7= pass on menu index to KOP

DLN 9

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x2A MODE DATA 0 DATA 1 DATA 2 not used (0x00)

0x2A 0x02 0x20 0x00 0x00 0x00 0x00 0x00
- 27 -

Manual operating panels

1.4.41 MENU_ON (0x2B)

Telegram format:

Example

The image 2 is called up in the example and the menu tree is activated immediately.

1.4.42 CAN_INIT (0x2C)

Telegram format:

Example

The CAN-interface is initialized again in the example.

1.4.43 SET_KEYBOARD_LAYOUT (0x15)

Telegram format:

Function: The telegram activates a menu image, i.e. a menu option/nominal value is selected imme-
diately in the called up image. Thus the possibility exists to influence the menu tree from
externally via the CAN-interface.

Direction: Master -> operating panel
User data: Number of the image 16 bits value, 1-9999, without preceding sign.

If here 0xFFFF (-1) is indicated, then the menu tree is completely deleted.
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x2B Image number

low-byte
Image number
high-byte

not used (0x00)

0x2B 0x02 0x00 0x00 0x00 0x00 0x00 0x00

Function: The operating panel is prompted via this telegram to initialize the CAN-interface again.
Thereby possibly modified parameter of the interface (baud rate, identifier) are considered.

Direction: Master -> operating panel
User data: EXTENDED = 0: transmit always value 0x00 !

EXTENDED = 1...255: reserved for future functions
DLN 3

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x2C EXTENDED not used (0x00)

0x2C 0x00 0x00 0x00 0x00 0x00 0x00 0x00

Function: Key code telegram (ITS7/AT-specific telegram).
With this telegram a nominal value entry of arbitrary ASCII-signs can be made (ASCII-var-
iables !), i.e. if a nominal value is selected, the received ASCII-sign is inserted in the nom-
inal value. This serves for to enable an ASCII-entry via function keys.

Direction: Master -> operating panel
User data: KEYCODE: ASCII-Code

EXTENDED KEYCODE: reserved for extensions (at the moment 0x00)
DLN 4

D0 D1 D2 D3 D4 D5 D6 D7
- 28 -

Manual operating panels
Example

The sign A is received in the example as entry for an ASCII-variable.

1.4.44 DRAW (0x2E)

1.4.44.1 Panels of the ITS series

Telegram format:

Example (draws a rectangle of (10,0)-(130,30))

TA=0x2D KEYCODE EXTENDED
KEYCODE

not used (0x00)

0x2D ’A’ 0x00 0x00 0x00 0x00 0x00 0x00

Function: function to draw graphical objects
Direction: master -> operating panel
User data: attribute and dimension of the graphical object:

ATTRIBUTE:
Bit0=0: deleting a selected area (clear pixel)
Bit0=1: displaying the selected area (set pixel)
Bit1=1: flashing representation of the selected area
Bit3=1: inverse representation of the selected area

STARTPOS:
X,Y: starting position in pixel (value area 0-255)

ENDPOS:
X, Y: End position in pixel (value area 0-255)

SHAPE:
0: rectangle (contains: horizontal and vertical lines)
1: line (is implemented on request)
2: circle (is implemented on request)
3: rhombus (is implemented on request)

DLN 8

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x2E ATTRIBUTE STARTPOS-X STARTPOS-Y ENDPOS_X ENDPOS_Y^ SHAPE not used

(0x00)

0x2E 0x01 0x0A 0x00 0x82 0x1E 0x00 0x00
- 29 -

Manual operating panels

1.4.44.2 Panels of the AT series

Telegram format:

Example (draws a rectangle of (10,0)-(130,30))

Function: function to draw graphical objects
Direction: master -> operating panel
Used data: attribute and dimension of the graphical object:

ATTRIBUTE:
Bit0=0: deleting the selected area (clear pixel)
Bit0=1: displaying the selected area (set pixel)
Bit1=0: normal representation
Bit1=1: flashing representation of the selected area
Bit3=1: Inverse representation of the selected area
Bit7=0: static area
Bit7=1: dynamic area

X1,Y1: point 1
X2, Y2: point 2
SHAPE:

Draw functions
Bits 0-6
0: rectangle not filled. point 1=top left corner; point 2=bottom right corner
1: line from point1 to point 2
2: circle, not filled. point 1=centre point; D4=radius
3: rhombus (is implemented on request)
4: rectangle filled. point 1=top left corner; point 2=bottom right corner
5: circle, filled. point 1=centre point; D4=radius
6: image points colour = Bit0 of D1 (black/white)
7: ellipse, filled. point1=centre point; D4=radius X; D5=radius Y
Bit 7
0: indirect drawing in the memory, then image restructure
1: indirect drawing in the memory and on the screen, without image restructure
Difference:
Method 0 is slower, overwrites, however, only in the selected drawing level.
Method 1 overwrites in the screen all areas with the next image structure
(modification of a variable or similar) appears but then the correct representation.
Method 1 is ofered if you draw areas in which no other
elements are contained (empty image area). The output occurs substantially faster.
Push operations
Source point1
Target point 2
Width of the area D1
Height of the area D7
D6 = 8: push screen area, static, not flashing area
D6 = 9: push screen area, static, flashing area
D6 = 10: push screen area, dynamic, not flashing area
D6 = 11: push screen area, dynamic, flashing area

DLN 8

D0 D1 D2 D3 D4 D5 D6 D7
TA=0x2E ATTRIBUTE X1 Y1 Y2 Y2 SHAPE not used

(0x00)

0x2E 0x01 0x0A 0x00 0x82 0x1E 0x00 0x00
- 30 -

Manual operating panels
2 CAN-bus
The CAN-bus is a bus system that stems from the
automobile industry. The abbreviation means:

Controller
Area
Network

what means more or less "network between small-
control devices".
The CAN-bus is very easy to handle and also very
insensitive to faults, provided the regulations for
the installation are to be observed. And it is low in
costs. All these reasons contributed to using the
CAN-bus in the operating panels.

2.1 Wiring
The CAN-bus is a bus system - as its name al-
ready says. In this system, rules apply which are
to be adhered to. If this is not the case, then it can-
not be forecasted whether the bus works correctly
or not. This goes so far that individual devices
work, however others not. But the CAN-bus has
proven itself in practice to be very uncomplicated
if the following regulations are adhered to:

2.1.1 Bus structure (topology)
The CAN-bus has to be set up in a bus structure
whose both ends are provided each with a termi-
nal resistance of 120 ohm.
If a star topology is required, then repeaters have
to be installed which electrically decouple long
stub lines from other bus segments. The relevant
structure regulations for CAN-bus systems apply
in this connection.

2.1.1.1 Line connections
It is recommendable to use the lines CAN-L, CAN-H
and the screening CAN-SHLD as minimum wiring.
Put on the screen on both sides. The lines CAN-L
and CAN-H may not be crossed at the devices but
have to be wired on a strait one to one basis.
It is recommended to lead these lines onto a twist-
ed pair of wires.
You can connect the line CAN-GND still to all de-
vices for to increase the transfer security. If you
have additionally twisted wire pairs in your bus ca-
ble, please connect then both wires of a twisted
pair to CAN-GND.

2.1.1.2 Bus cable
Also unscreened twisted lines can be used for test
purposes in a trouble-free environment for labora-
tory structures with short lines. You should use a
cable according to DIN/ISO 11898 in your system.
The specific features of the cable can be obtained

from the standard. Contact a cable manufacturer
in the case of doubt who produces bus cables es-
pecially for CAN.

2.1.1.3 Line lengths
The following table gives you a guide-value for the
maximum cable length of the CAN-bus:

With larger line lengths you should use a cable
with less specific resistance - thus a thicker cable.
If you should plan a system which exceeds these
indicated lengths, then you can also plan 2 CAN-
segments and connect these via a repeater. The
repeater provides that all news is present on both
segments, however, that the segments are electri-
cally decoupled from each other.

2.1.2 Terminating
A resistance with 120 ohm must be wired on both
ends of the bus between the lines CAN-L and CAN-
H. The 4-pole screw-terminal strip for the CAN/bus
serves at the CAN-module for this, simply insert the
resistance, and tighten the screws. A switchable re-
sistance can be found at the operating panel. A
slide switch is located beside the DB-9 CAN-cable
connector. If you push this to the position ON, then
the internally-installed bus termination is activated.

2.1.3 Addressing
Each panel must have a single number (or a single
identifier) in the bus - thus do not place a number
twice. The CAN-modules have DIP-switches to
adjust the addresses. The operating panels are
adjusted to an address via the editor.

2.2 Logs in general
There are different log specifications also for the
CAN-bus. Although the data transport is with all
logs identical via the CAN-controller, the placing of
the identifier (=address) and the telegram content
of the different logs is dealt with separately.
The operating panels govern 3 logs in total.

Baud rate Resistance Wire cross-
section

Max. cable
length

10 kBit/s < 18 mohm/m 1.00 mm2 2,000 m

20 kBit/s < 25 mohm/m 0.80 mm2 1,000 m

50 kBit/s < 30 mohm/m 0.65 mm2 700 m

100 kBit/s < 40 mohm/m 0.50 mm2 500 m

125 kBit/s < 44 mohm/m 0.45 mm2 400 m

250 kBit/s < 50 mohm/m 0.40 mm2 200 m

500 kBit/s < 60 mohm/m 0.34 mm2 100 m

1 MBit/s < 70 mohm/m 0.25 mm2 40 m
- 31 -

Manual operating panels

2.2.1 SELECAN-log
Initially developed by the company SELECTRON,
this log has achieved only a little distribution. It is
based on a master (host), which takes over the
configuration and monitoring of the connected
slaves (modules). It must be viewed as proprietary
log due to its little distribution.

2.2.1.1 Structure of the identifier
The 11-bits CAN-identifier contains 3 areas for the
identification in total; 3 bits for the news priority, 5
bits node address (max. 32 devices result) and 3
bits-identification for the message direction. The
user can determine the node address, whereby
the master should always receive the node ad-
dress 0 (because of the news priority).The SELE-
CAN-log is only necessary if the ITS6 is to be
operated together with the modules of the series
GCM. The data length (DLC) amounts always to 8,
the RTR-Bit (R) always to 0. The identifier-format
is therefore as follows:

2.2.1.2 Identifier table in the SELECAN-log
The following are needed as identifier (the bits 15
to 5 = 11 bits are considered):

P0: Service, Broadcast, Host to Mod., Command
P1: Service, Host to Module, Command
P2: Service, Broadcast, Module to Host, Status
P3: Service, Module to Host, Status
P4: Data, Host to Module, Interrupt-Data
P5: Data, Host to Module
P6: Data, Module to Host, Interrupt-Data
P7: Data, Module to Host
(P0-P7: 3 bits for the news priority)

2.2.2 Telegram contents
The telegram contents are exactly specified. You
receive a special manual upon request via the SE-
LECAN-log.

2.2.3 Operating panel to SELECAN-PLC
The operating panels use only the data-channels
of the SELECAN-log for the communication with
the control: that means that the bit No. 10 is al-
ways set to 1. All functions can be operated via
these data-channels.Thereby the telegram-length
(size of the data area) is always determined to 8
bytes (maximum size). The address of the operat-
ing panel ("panel number") is adjusted in the ITE.
(see chapter 10)

15-13 12-8 7-5 4 3-0

Prio Node address Spec. DLC

x x x x x x x x x x x 0 1 0 0 0

Master transmit to module 1 1 1 0 x x x x

Digital module to master 0 1 0 0 x x x x

Analogue module to mas-
ter

0 1 1 0 x x x x

Ad P0 P1 P2 P3 P4 P5 P6 P7

0 0-7 256-
263

512-
519

768-
775

1024-
1031

1280-
1287

1536-
1543

1792-
1799

1 8-15 264-
271

520-
527

776-
783

1032-
1039

1288-
1295

1544-
1551

1800-
1807

2 16-23 272-
279

528-
535

784-
791

1040-
1047

1296-
1303

1552-
1559

1808-
1815

3 24-31 280-
287

536-
543

792-
799

1048-
1055

1304-
1311

1560-
1567

1816-
1823

4 32-39 288-
295

544-
551

800-
807

1056-
1063

1312-
1319

1568-
1575

1824-
1831

5 40-47 296-
303

552-
559

808-
815

1064-
1071

1320-
1327

1576-
1583

1832-
1839

6 48-55 304-
311

560-
567

816-
823

1072-
1079

1328-
1335

1584-
1591

1840-
1847

7 56-63 312-
319

568-
575

824-
831

1080-
1087

1336-
1343

1592-
1599

1848-
1855

8 64-71 320-
327

576-
583

832-
839

1088-
1095

1344-
1351

1600-
1607

1856-
1863

9 72-79 328-
335

584-
591

840-
847

1096-
1103

1352-
1359

1608-
1615

1864-
1871

10 80-87 336-
343

592-
599

848-
855

1104-
1111

1360-
1367

1616-
1623

1872-
1879

11 88-95 344-
351

600-
607

856-
863

1112-
1119

1368-
1375

1624-
1631

1880-
1887

12 96-
103

352-
359

608-
615

864-
871

1120-
1127

1376-
1383

1632-
1639

1888-
1895

13 104-
111

360-
367

616-
623

872-
879

1128-
1135

1384-
1391

1640-
1647

1896-
1903

14 112-
119

368-
375

624-
631

880-
887

1136-
1143

1392-
1399

1648-
1655

1904-
1911

15 120-
127

376-
383

632-
639

888-
895

1144-
1151

1400-
1407

1656-
1663

1912-
1919

16 128-
135

384-
391

640-
647

896-
903

1152-
1159

1408-
1415

1664-
1671

1920-
1927

17 136-
143

392-
399

648-
655

904-
911

1160-
1167

1416-
1423

1672-
1679

1928-
1935

18 144-
151

400-
407

656-
663

912-
919

1168-
1175

1424-
1431

1680-
1687

1936-
1943

19 152-
159

408-
415

664-
671

920-
927

1176-
1183

1432-
1439

1688-
1695

1944-
1951

20 160-
167

416-
423

672-
679

928-
935

1184-
1191

1440-
1447

1696-
1703

1952-
1959

21 168-
175

424-
431

680-
687

936-
943

1192-
1199

1448-
1455

1704-
1711

1960-
1967

22 176-
183

432-
439

688-
695

944-
951

1200-
1207

1456-
1463

1712-
1719

1968-
1975

23 184-
191

440-
447

696-
703

952-
959

1208-
1215

1464-
1471

1720-
1727

1976-
1983

24 192-
199

448-
455

704-
711

960-
967

1216-
1223

1472-
1479

1728-
1735

1984-
1991

25 200-
207

456-
463

712-
719

968-
975

1224-
1231

1480-
1487

1736-
1743

1992-
1999

26 208-
215

464-
471

720-
727

976-
983

1232-
1239

1488-
1495

1744-
1751

2000-
2007

27 216-
223

472-
479

728-
735

984-
991

1240-
1247

1496-
1503

1752-
1759

2008-
2015

28 224-
231

480-
487

736-
743

992-
999

1248-
1255

1504-
1511

1760-
1767

2016-
2023

29 232-
239

488-
495

744-
751

1000-
1007

1256-
1263

1512-
1519

1768-
1775

2024-
2031

30 240-
247

496-
503

752-
759

1008-
1015

1264-
1271

1520-
1527

1776-
1783

2032-
2039

31 248-
255

504-
511

760-
767

1016-
1023

1272-
1279

1528-
1535

1784-
1791

2040-
2047
- 32 -

Manual operating panels

2.2.3.1 Control --> ITS
The identifier has the following format (11-bits):
Bit-No.:

The address works out to:
Identifier=1031 + 8 x panel no.

2.2.3.2 ITS-6000 --> control
The identifier has the following format (11-bits):

Here we receive:
Identifier=1794 + 8 x panel no.

2.2.4 Using GCM-modules
The operating panels can monitor and analyze in-
dependently CAN-modules of the series GCM.
This enables in many cases a low-cost solution for
to installing e.g. error-monitoring in plants or build-
ings. The panel can work then as independent
system without external control.
You can create the control logic (PLC-function) as
contact plan or in C. Simple functions like "assign
input to message" or "assign counter to input" can
be created via the module configuration-tool with-
out having to write a single line program.
Only if logic functions like "if input 1 and input 2,
then image 27" are necessary, then there’s no al-
ternative for a control program.

2.2.4.1 Prerequisites
At the moment the SELECAN-log is necessary for
an independent system with operating panel and
CAN-modules. This has to be activated in the mask
"panels"/"parameterizing", register card "CAN-ad-
justments". Thereby the master-operating panel
(there can be also several operating panels switched
in the CAN-bus) has to be adjusted to the panel ad-
dress 0 and has to be configurated as master:

You have to adjust "ITS is CAN-master" in the field
"CAN configuration".
You can select the baud rate optionally.

2.2.4.2 Master-slave-configurations
If you want to use a second operating panel for the
observation of processes, then you can use at the
slave the same project as with the master. Adjust
simply "operating panel is slave", and an unused
panel number is unequal to 0.
If you have to control outputs from both operating
stations, then the coordination must be done at the
master. That means if you want to switch an output
from the slave, then you should send a telegram to
the master (with the internal control program), in
which you e.g. send a variable which receives 0 for
output off, 1 for output on. You only must query for
the value of the variable in the master-control pro-
gram and control the output correspondingly. This
sounds much more complicate than it is; there is
the function „transmit CAN-telegram“ in the control
program.If you use this and structure thereby the
telegram in such a way as described in the tele-
gram description "SET VARIABLE VALUE", then
you can switch up to 32 outputs via a single varia-
ble. Each variable has up to 32 bits and each bit
can thereby be queried individually (Note: copy
variable into a pointer double-word @MD, access
then with the pointers @Mx.y.).

15 14 13 12 11 10 9 8 7 6 5

1 0 0 Addr
4

Addr
3

Addr
2

Addr
1

Addr
0

1 1 1

15 14 13 12 11 10 9 8 7 6 5

1 1 1 Addr
4

Addr
3

Addr
2

Addr
1

Addr
0

0 1 0
- 33 -

Manual operating panels

2.2.4.3 Adjusting the CAN-modules
The CAN-modules have a series of DIP-switches.
You can adjust with these the baud rate and the
node address/module number.
See the following tables for this:

* This baud rate setting is not possible at the mo-
ment. This is not supported by the bus-couplers of
the modules. Please contact us if you are in need
of this bus rate.

Place the module addresses as follows:

2.2.4.4 Assignment of panel addresses/
identifier

If you want to use several operating panels, then
you must exchange possibly data between these
panels. This can be achieved with the contact plan
KOP via the function "send CAN telegram". But

you must know which identifier you have to enter.
The following table gives an assignment from the
panel address to the receiving-identifier of the data
channel, which you have to adjust in KOP:

As already said: These identifiers indicate mainly
the data-receiving channel of the appropriate pan-
el. There are also used further identifiers e.g. for
status- and configuration news. These can be
found in a table further above.

2.2.4.5 Actuate modules from the internal
control program

You can find in the Appendix notes for the number-
ing of the inputs, which deviate from the number-
ings specified here.
KOP can actuate modules with the addresses 1-8
directly via the KOP-variables "@DIx.y" (Digital
In), "@DOx.y" (Digital Out), "@AIx.y" (Analog In)
and "@AOx.y" (Analog Out); x stands for the mod-
ule address and y for the in input/output number.
You must generally decide whether you want to

Baud rate DIP 6 DIP 7 DIP 8
10 kBit/s off off off
20 kBit/s on off off
50 kBit/s off on off
100 kBit/s on on off
125 kBit/s off off on
250 kBit/s on off on
500 kBit/s off on on
1 MBit/s* on* on* on*

No. DIP 1 DIP 2 DIP 3 DIP 4 DIP 5
1 on off off off off
2 off on off off off
3 on on off off off
4 off off on off off
5 on off on off off
6 off on on off off
7 on on on off off
8 off off off on off
9 on off off on off
10 off on off on off
11 on on off on off
12 off off on on off
13 on off on on off
14 off on on on off
15 on on on on off
16 off off off off on
17 on off off off on
18 off on off off on
19 on on off off on
20 off off on off on
21 on off on off on
22 off on on off on
23 on on on off on
24 off off off on on
25 on off off on on
26 off on off on on
27 on on off on on
28 off off on on on
29 on off on on on
30 off on on on on
31 on on on on on
0 Reserved for the master (operating panel)

Panel address Receiving-identi-
fier

0 1.031
1 1.047
2 1.055
3 1.063
4 1.071
5 1.079
6 1.087
7 1.095
8 1.103
9 1.111
10 1.119
11 1.127
12 1.135
13 1.143
14 1.151
15 1.159
16 1.167
17 1.175
18 1.183
19 1.191
20 1.199
21 1.207
22 1.215
23 1.223
24 1.231
25 1.239
26 1.247
27 1.255
28 1.263
29 1.271
30 1.279
31 1.287
- 34 -

Manual operating panels

control output functions of the modules via the
control program or the outputs of the variables via
the CAN-configuration-tool. You cannot go at the
same time via @DO and a variable to an output.
This is possible with inputs.
At modules with an address larger than 8, you have
to do everything via internal variables on which the
internal control program can also access.

2.2.5 Free CAN-log
The operating panel with the free CAN-log can be
adjusted to any identifier both for transmitting and
receiving. For the receive up to 8 receiving-identi-
fiers are adjustable.This becomes interesting if
several controls or operating panels has to com-
municate with each other. As this log is the most
flexible, it is also used more frequently.
We do not find a identifier table since everything
can be adjusted freely.

2.2.5.1 Structure of the identifier
The data length of the telegrams (when transmitting
and receiving via the TOS, do not send KOP) amounts
always to 8, and the RTR-Bit (R) is not considered.
The identifier-format is therefore:

2.2.5.2 Telegram contents
The telegram content is described in the Appen-
dix. The content of the telegram is determined by
the "Multiplexer-Byte D0", with whose value the
following telegram content D1-D7 is analyzed.
Both transmitted and also received telegrams
must keep to this telegram format.

2.2.6 CANopen-log
CANopen is a log which consists of several levels.
It determines how the identifier of the devices
should look like; and it divides data transfers into
the 3 areas - network management (NMT), proc-
ess data transfer (PDO) and parameterize data
transfer (SDO). Panels which keep to these spec-
ifications can principally be operated in a CAN-
open-network.
Beyond that, CANopen defines so-called "panel
profiles". In these profiles, a basic standard for pa-
rameterize data and process data is defined each
for the same panel types (e.g. revolution transmitter
or frequency converter). Panels of manufacturers
who keep to these panel profiles can be controlled
in the same way (mostly only the basic functions,
but nevertheless!). How the data transfer takes
place is determined again by the CANopen-log.
CANopen enables the operation of 128 devices.

2.2.6.1 Basic behaviour as SLAVE
The operating panel behaves as Slave like a digit-
al I/O-module according to the standard DS-401.
There were no specifications (profile) for operating
panels at the time of the driver development. The
operating panel delivers or receives CANOpen-log
as process data (PDO). The telegram format can
be found in the Appendix (one could designate the
transfer type as "multiplexed PDO"). Additionally
the SDO- or NMT-services are implemented.

2.2.6.2 Basic behaviour as MASTER
As master an enlarged functionality is available:
The operating panel copies independently PDOs
received into variables with appropriate handle, if
present. An analyzing of PDO-data is then easily
possible via the control program.

But we do not go fully into details. There is a chap-
ter totally on this via CAN/open in the Appendix.

2.2.6.3 Identifier table of CANopen
The identifier can be placed freely in CANopen via
SDO-services. It is, however, recommendable to
place the identifier according to the so-called „Pre-
defined connection set" in order to receive a basic
standard. CANopen works out these identifiers via
simple formulas on the basis of the so-called node
number „Node-ID" (all indications in decimal rep-
resentation):

2.2.7 Mixing of logs
If you want to "drive" several logs on the same CAN-
bus, then you must observe only that identifiers are
not placed twice. Besides, the masters must be able
to keep respective identifiers away from the moni-
toring. Otherwise a message could be analyzed in
the wrong log and thus lead to malfunctions.

15-5 4 3-0
Identifier R DLC
x x x x x x x x x x x x 1 0 0 0

Type ID = ID-area
Network management
NMT

Node-ID 0-127

Emergency
EMCY

Node-
ID+128

128-255

Transmitting process
data
(TX-PDO)

Node-
ID+384

384-511

Receiving process data
(RX-PDO)

Node-
ID+512

512-639

Transmitting system data
(TX-SDO)

Node-
ID+1408

1408-1535

Receiving system data
(RX-SDO)

Node-
ID+1536

1536-1663

Node monitoring
(GUARD)

Node-
ID+1792

1792-1919
- 35 -

Manual operating panels
3 CAN-Open driver
CANopen is a log definition on CAN-BUS-Hard-
ware. It concerns thereby the specification 4.0 of
CANopen, which is also based on the program-
ming of the operating panels.
The present manual is not meant to integrate the
CANopen specification but to represent the fea-
tures of the operating panel as CANopen device.

In the present implementation the following fea-
tures are supported by CANopen.

MASTER:
Minimum network management
Transmitting and receiving of SDOs
Transmitting and receiving of PDOs

SLAVE:
Minimum boot-up behaviour
Predefined Connection Set
No PDO-mapping
Boot-up Node-Guard Frame

This documentation uses the notation employed in
the CANopen literature for the telegram respre-
sentation etc.

3.1 Requests

3.1.1 Operating system (TOS)
Since the CANopen functionality could not be inte-
grated any longer into the standard operating sys-
tem, its own operating system (TOS) is supplied
with CANopen. This TOS has the same functional-
ity like the standard TOS but can run only the
CANopen log on the CAN-bus.

Concretely:
Standard-TOS operating panel: IO0xxSxx.hex
Standard-TOS ITS7000: IO1xxSxx.hex
CANopen-TOS operating panel: IO0xxAxx.hex
CANopen-TOS ITS7000: IO1xxAxx.hex
(x varies)

3.1.2 Firmware (BIOS)
A special BIOS is not necessary. That means the
CANopen software can be used also on other pan-
els.

3.1.3 Project planning software (Editor ITE)
In order to be able to parameterize CANopen, the
project planning software ITE6D16 or a newer ver-
sion is necessary. This project planning software
considers already the additional TOS versions for
CANopen.

3.1.4 Settings in the ITE
The editor has been supplemented by the CAN-
open setting possibilities. You can find these if you
click on "panels"/"parameterize" in the register
card "CAN settings":

These setting fields appear if you select "CAN-
Open". The meaning of the fields is:

3.1.5 Field ITS-CAN configuration
Here you adjust whether the operating panel is to
be used as CAN-Open Master or as Slave. Details
regarding the difference "Master - Slave" can be
found further back in this documentation.

3.1.6 Field node number
In this field you adjust which node number (Node-
ID) the operating panel is to have. Adjust the SDO-
and PDO identifier (COB-IDs) via the node
number just as they are suggested by the "prede-
fined connection set" of CANopen (from the view
of the operating panel):

Emergency object = 128 + Node-ID
TX-PDO-ID = 384 + Node-ID
RX-PDO-ID = 512 + Node-ID
TX-SDO-ID = 1408 + Node-ID
RX-SDO-ID = 1536 + Node-ID
Node Guard = 1792 + Node-ID

3.1.7 Field guard-time
This field is only of importance for the slave. Here
the node guard-time is adjusted (Node Guard-
time) in multiples of 100 ms.
- 36 -

Manual operating panels

3.1.8 Field time window
This field is only of importance for the slave.
Here the "life cycle" (Lifetime) is adjusted. The
meaning of the parameter is how often the time
may expire that is adjusted under "guard-time" be-
fore the operating panel recognises and signals an
error.

3.1.9 Display fields Download-ID's
In these fields the identifiers appear under which
the operating panel carries out a project-down-
load.

You need these adjustments in order to be able to
carry out a transfer of the project from the editor
(PC) to the operating panel. Enter in the mask
"panels"/"interface" the download-ID "receiving"
as transmitting identifier that is displayed here.
By the way: these are the identifiers (COB-ID's)
under which the PDO-transfers take place.

3.1.10 Field interval time for call...
This field is only of importance for the slave.
Here you determine how often the operating panel
demands the external variable again. See manual
- Operating panels: Operating and watching.

3.1.11 Field minimum waiting time
Here you determine how much time is to pass at
least between two CAN-telegrams sent by the op-
erating panel. Thus you can restrict here the bus
load for the operating panel.
This setting is ignored by the NMT-services, since
time-outs could here result.

3.2 MASTER-implementation
It was the aim of the MASTER-implementation to
control simple CANopen-devices via the operating
panel and to parameterize, if necessary. Thereby,
some mechanisms have been implemented which
have not to be realised only via the control pro-
gram as KOP or in C.
The master is activated in the register card "CAN
settings" (under "panels"/"parameterize") , field
"ITS CAN configuration".

3.2.1 Minimum network management
The network management of the master contains
the automatic start-up of nodes. A node-guarding
(Node-Guarding) is not implemented. This has to
be realised per KOP.

3.2.1.1 Master Boot-up
The master transmits when starting a "BROAD-
CAST START REMOTE NODE" to all nodes:

3.2.1.2 Slave Boot-up (Version 4.0)
Version 4.0 of CANopen requests that a slave
sends a telegram "Boot-up Event" with DL=1 and
D0=0 with the transition of "initialisation" to "pre-
operational" :

The master answers this telegram with a "Start re-
mote node" particularly for this node:

Thus nodes which have had a failure or log on
again are automatically taken into operation.

3.2.1.3 Slave Boot-up (RFC to version 3.0)
In this RFC it has been requested that a slave
transmits an "Emergency" without content during
the transition from "initialisation" to "pre-operation-
al" :
- 37 -

Manual operating panels
The master replies also to this telegram with a
"Start Remote-Node":

3.2.2 Transmitting and receiving of SDOs
The master cannot carry out automatically trans-
mitting and receiving of SDOs. Each application
has its own data exchange.
The master monitors, however, the correct ex-
change of SDO-data and displays errors.
The exchange of SDO-data is realised via the con-
trol program in KOP or C.

3.2.2.1 Transmitting/requesting SDO data
The KOP starts a SCO-transmission or a SDO-
query with the relay function "transmitting SDO".
Practically such a function is always started be-
cause of a condition - see further underneath for
this the application example .
In the following mask the function is selected:

If you press the button "parameterize SDO...",
then you receive the setting possibilities for the

SDO-parameter:

Field SDO-number
You have to enter in this field a number under
which you want to make later the status query for
this SDO. The operating panel can process max.
15 SDOs at the same time.
Avoid that different SDOs are provided with the
same SDO number. This could lead to erroneous
information.
The panel needs the SDO number only internally.
This information does not appear on the CAN-bus.
Field SDO type
Here you can select whether you want to read the
SDO data from another node (Read SDO) or
whether you want to send SDO data to another
node (Write SDO).
Field COB-ID transmitter
Enter in this field with which COB-ID the operating
panel is to transmit this SDO. The entry is decimal
but a variable can be also entered (as shown in the
example).
Field COB-ID receiver
Here you enter under which COB-ID the reply/con-
firmation of the receiver is to be expected. Also
here a variable can be entered.
Field Time-out
Indicate here how long the operating panel has to
wait maximum for a reply/confirmation.
Field Index
Enter here the index of the SDO. The entry is dec-
imal according to standard, but can be also indi-
cated hexadecimal by placing "0x" in front.
Example: 0x1000. Also variables are here possi-
ble.
Field Subindex
contains the subindex of the SDOs. Entries just as
with the index.
Field data
You have to fill in this field only if you want to trans-
mit SDO data to a node. The entry is again deci-
mal, hexadecimal ("0x") or a variable.
- 38 -

Manual operating panels

3.2.2.2 Query SDO-answer
IMPORTANT !!!
THE STANDARD CLOSING-CONTACT WITH-
OUT ABORTION HAS ALWAYS TO BE USED
FOR THE QUERY OF SDO REPLIES IN KOP !!!

The status query of a SDO transmission or -re-
quest occurs always with a standard closing-con-
tact.
The branch behind the closing-contact is carried
with current if a successful reply has arrived. The
run occurs only once, afterwards the SDO is taken
out of the internal guarding.
If a time-out or a SDO error occurs, then the
branch behind the closing contact is run through
without current. The run occurs also only once, af-
terwards the SDO is taken out of the internal
guarding.
With this method the SDO data exchange can be
guarded.
The parameterization of the closing-contact is car-
ried out in the closing contact mask:

Field "number/variable/SDO"
In the field "number/variable/SDO" you enter the
SDO number which you have used in the mask
"SDO parameterize". Thus the KOP has the as-
signment which SDO it has to be guarded.
Field "SDO status result"
Enter in the field "SDO status result" where KOP
has to file the result or the data. This can be a
pointer word or a variable.

As already said: Run of the branch with current:
SDO is ok (reply is then in the variable) or run of
the branch without current: SDO error. In the vari-
able an expanded error code is then to be found,
which is explained in detail in the CANopen docu-
mentation.

3.2.3 Example:Transmit SDO
In the following example data are transmitted for a
SDO if the key 1 is pressed. The guarding acti-
vates the message 3 if a time-out has been
achieved or the SDO was invalid.

3.2.4 Example:Read SDO
In the following example the requested SDO data
are saved in the variable SPEED or message 4 is
called up in case of error:

So reading and writing of SDOs is possible with
less programming effort.

3.2.5 Transmitting and receiving of PDOs
The transmission of PDOs is substantially simpler
than the SDO handling, since here replies have to
be considered .

3.2.5.1 Transmitting PDOs
This function is already fulfilled for a long time by
the relay function "transmitting CAN telegram".
The following errors are relevant:

Field "ID"
Enter here the COB-ID under which the PDO is to
be transmitted. The entry can be decimal, hexa-
decimal ("0x") or a variable.
Field "LEN"
Enter here the length of the PDOs (how many
bytes are transmitted?).
Field "DATA"
If the field "LEN" is unequal to 0, then you can firm-
ly enter here the data to be transmitted (2 numbers
each result 1 byte: 05010206 results D0=05,
D1=01, D2=02, D3=06) or transmit data via point-
er: @MB10 results D0=MB10, D1=MB11 etc.

3.2.5.2 Receiving PDOs
You only need to set up the appropriate internal
variables for the reception of PDOs:

Variable handle for D0-D3 = COB-ID PDO
Variable handle for D4-D7 = COB-ID PDO + 2000
- 39 -

Manual operating panels

The master files the received PDO data automati-
cally in these variables if it receives data under the
appropriate COB-ID.

CAUTION: The variable handles 384 to 511 and
2384 to 2511 should not be used for other purpos-
es than for the PDO reception.

Controlling the master
If the master receives PDO (385 + Node-ID) on its
own ID, then it analyses the PDO-telegram ac-
cording to the description of the free CAN-driver.

3.2.6 Project download
In order to load a project into the operating panel
with the ITE, the transmission identifier can be ad-
justed under "panels"/"interface" on 512 + Node-
ID (to be found under "panels"/"parameterize",
register card "CAN settings") ("select free CAN").
Then the operating panel "hears" the editor and
starts with the download.

3.2.7 Object directory
The master has currently no object directory.

3.2.8 Status transitions
The MASTER goes always automatically to the
status "operational". There are no other statuses.

3.3 SLAVE implementation
The current SLAVE implementation is restricted to
the emulation of an I/O-device. Thus the telegrams
are analysed as outlet data in such a way as they
are also defined in the free CAN-driver. The status
telegrams are delivered in the same way simply as
input PDO.

Only the control of the status transitions and the
object directory are added.

The slave is activated in the register card "CAN
settings" (under "panels"/"parameterize"), field
"ITS CAN configuration".

3.3.1 Status diagram
The slave uses the "minimum-bootup behaviour"
according to the CANopen Draft standard 301 ver-
sion 4.0:

3.3.1.1 Status transition table

3.3.1.2 Description of the statuses
The following conditions apply in the individual sta-
tuses:

Status initialisation
The operating panel initialises all internal buffers
and interfaces. No communication takes place
during this status.

Status pre-operational
In this status the NMT-services as well as the
SDO-transfer are active. PDO-services are not
specified.
Exception: since a download must be possible in
each status of the operating panel, the PDO with
D0=0x10 (request memory read) is still executed.
This PDO is used by the editor for the purpose of
initialising the download.
Later versions of the editor will place a
"Start_Remote_Node" request in front in order to
achieve the status "operational", before the "re-
quest memory read"-PDO is transmitted.

(1) The status "initialisation" is automati-
cally achieved when switching on.

(2) After initialisation is effected, the sta-
tus "pre-operational " is automatically
achieved and the telegram "boot-up
event" is transmitted.

(3), (6) Request "Start_Remote_Node"
(4), (7) Request "Enter_PRE-

OPERATIONAL_State"
(5), (8) Request "Stop_Remote_Node"
(9),(10),
(11)

Request "Reset_Node"

(12),(13),
(14)

Request "Reset_Communication"
- 40 -

Manual operating panels

Status operational
In this status all services are active.

Status prepared
If the status "prepared" is requested, then only the
network-management (NMT) is active. Neither
PDO nor SDO transfers are possible.
The PDO-exception applies here also like in the
status "pre-operational"

3.3.1.3 Description of the telegram communi
cation

The following telegrams are responsible status
change. The operating panel accepts as Node-ID
its own or the 0 (broadcast = to all)

Boot-up_Event

Start_Remote_Node

Enter_PRE-OPERATIONAL_State

Stop_Remote_Node

Reset_Node

Reset_Communication

3.3.2 Object directory
The object directory of the slave is oriented to the
DSP-401 for I/O-modules. Currently the object di-
rectory is only readable but not writeable. The fol-
lowing objects are defined:

3.3.2.1 Object 1000h: Panel type
Contains information over the panel type.
Object description:

Object entry

3.3.2.2 Object 1001h: Error index
Contains information on errors that have occurred
Object description:

INDEX 1000h
Name Panel type
Object type Individual value (VAR)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Mandatory

Access Read only
PDO-mapping no
Value Profile number and additional in-

formation:
D4/D5 = 401d = 191h
D6/D7 = 3 (inputs and outputs)

INDEX 1001h
Name Error index
Object type Individual value (VAR)
Data type 8 bits without preceding sign

(UNSIGNED8).
- 41 -

Manual operating panels
Object entry:

3.3.2.3 Object 1004h: Number of the PDOs
This object contains information on how many
PDOs are intended for the operating panel.
This object is omitted from DS 301 version 4, but
is, however, still contained for reasons of compat-
ability.

Object description:

Object entries:

3.3.2.4 Object 1008h: Manufacturer: panel name
In this object a 4-byte abbreviation is to be found
for the operating panel.

Object description:

Object entry:

3.3.2.5 Object 1009h: Hardware version
This object contains the number of the firmware in the
panel. Example: the BIOS IB055SE0 delivers ' 55'.

Object description:

Object entry:

3.3.2.6 Object 100Ah: Software version
This object contains the number of the operating
system (TOS) which is booted up in the panel. Ex-
ample: the TOS IO164A00 delivers ' 164'.

Category Mandatory

Access Read only
PDO-mapping no
Value Bit-coded according to DSP 301

Bit 0: Generic error (mandatory)
Bit 1: Current (not used)
Bit 2: Tension (n.u.)
Bit 3: Temperature (n.u.)
Bit 4: Communication error
Bit 5: not used
Bit 6: not used
Bit 7: not used

INDEX 1004h
Name Number of the PDOs
Object type Field (ARRAY)
Data type 32 bits without preceding sign

(UNSIGNED32).
D4/D5: Number Transmit PDOs
D6/D7: Number Receive PDOs

Category Optional (V3.0)

Subindex 0
Description Number of the supported PDOs
Category Optional (V3.0)
Access Read only
PDO-mapping no
Value D4/D5: 1

D6/D7: 1

Subindex 1
Description Number of the synchronous PDOs
Category Optional (V3.0)
Access Read only
PDO-mapping no
Value D4/D5: 0D6/D7: 0

Subindex 2
Description Number of the asynchronous

PDOs

Category Optional (V3.0)
Access Read only
PDO-mapping no
Value D4/D5: 1

D6/D7: 1

INDEX 1008h
Name Manufacturer: panel name
Object type Individual value (VAR)
Data type String (4 bytes) (visible string)
Category Optional

Access Read only
PDO-mapping no
Value 'IT61' = ITS 6100 series

'IT62' = ITS 6200 series
'IT71' = ITS 7100 series
'IT72' = ITS 7200 series

INDEX 1009h
Name Hardware version
Object type Individual value (VAR)
Data type String (4 bytes) (visible string)
Category Optional

Access Read only
PDO-mapping no
Value Dependent on the panel bios
- 42 -

Manual operating panels

Object description:

Object entry:

3.3.2.7 Object 100Bh: Node address
This object contains the parameterized node ad-
dress for the operating panel.
This object is omitted from DS 301 version 4, but is,
however, still contained for reasons of compatibility.

Object description:

Object entry:

3.3.2.8 Object 100Ch: Guard-time
Contains the adjusted Node-Guarding-Time
(guard-time) of the module in milli-seconds.

Object description:

Object entry:

3.3.2.9 Object 100Dh: Time window
Contains the adjusted factor for the node guarding
(lifetime = guard-time * factor)

Object description

Object entry

3.3.2.10 Object 100Eh: Guard-identifier
This object contains the identifier over which the
node guarding is carried out.
This object is omitted from DS 301 version 4, but
is, however, still contained for reasons of compat-
ibility.

Object description

Object entry

3.3.2.11 Object 100Bh: Number of the SDOs
This object contains the number of the SDOs
which the operating panel supports.
This object is omitted from DS 301 version 4, but
is, however, still contained for reasons of compat-
ibility.

Object description:

INDEX 100Ah
Name Software version
Object type Individual value (VAR)
Data type String (4 bytes) (visible string)
Category Optional

Access Read only
PDO-mapping no
Value Dependent on TOS

INDEX 100Bh
Name Node address
Object type Individual value (VAR)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Optional

Access Read only
PDO-mapping no
Value Node address (Node-ID)

INDEX 100Ch
Name Guard-time (Guard-time)
Object type Individual value (VAR)
Data type 16-bits without preceding sign

(UNSIGNED16)
Category Conditional; mandatory if heart-

beat-log is not supported.

Access Read only
PDO-mapping no

Value Adjusted guard-time

INDEX 100Dh
Name Time window
Object type Individual value (VAR)
Data type 8 bits without preceding sign

(UNSIGNED8).
Category Conditional; mandatory if heart-

beat-log is not supported.

Access Read only
PDO-mapping no
Value Adjusted factor

INDEX 100Eh
Name Guard-identifier
Object type Individual value (VAR)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Optional (V3.0)

Access Read only
PDO-mapping no
Value Node address + 1792

INDEX 100Fh
- 43 -

Manual operating panels
Object entry:

3.3.2.12 Object 1010h: Save parameter
The operating panel does not support any param-
eter saving. Therefore the 0 is indicated here as
highest subindex, what means no saving.

Object description:

Object entry:

3.3.2.13 Object 1011h: Load parameter record
The operating panel does not support any param-
eter saving. Therefore the 0 is indicated here as
highest subindex, what means no saving.

Object description:

Object entry

3.3.2.14 Object 1014h: Identifier Emergency
This object contains the identifier, which is used
for emergency objects.

Object description:

Object entry:

3.3.2.15 Object 1015h: Emergency waiting time
In this object the time is saved which the operating
panel has to wait al least between two emergency
telegrams. This entry must be writeable. Since the
operating panel does not permit at the moment the
writing of the object directory, this object is not yet
CANopen conforming. This is made up in the near
future. The object itself exists already.

Object description:

Object entry:

Name Number of the supported SDOs
Object type Individual value (VAR)
Data type 32 bits without preceding sign

(UNSIGNED32).
D4/D5: Number server SDOs
D6/D7: Number client SD's

Category Optional (V3.0)

Access Read only
PDO-mapping no
Value D4/D5: 1 server SDO

D6/D7: 0 client SDO

INDEX 1010h
Name Save parameter record
Object type Field (ARRAY)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Optional

Subindex 0
Description Number of the supported parame-

ter records
Category Mandatory
Access Read only
PDO-mapping no
Value 0

INDEX 1011h
Name Load parameter record
Object type Field (ARRAY)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Optional

Subindex 0
Description Number of the supported parame-

ter records
Category Mandatory
Access Read only
PDO-mapping no
Value 0

INDEX 1014h
Name Emergency identifier
Object type Individual value (VAR)
Data type 32 bits without preceding sign

(UNSIGNED32).
Category Mandatory if emergency is sup-

ported.

Access Read only
PDO-mapping no
Value Node-ID + 128

INDEX 1015h
Name Emergency waiting time
Object type Individual value (VAR)
Data type 16 bits without preceding sign

(UNSIGNED16)
Category Optional

Access Read only
PDO-mapping no
Value 0
- 44 -

Manual operating panels

3.3.2.16 Obj. 1016h:Expected heartbeat time
The panels can monitor each other by means of
the heartbeat (Heartbeat). This object contains in-
formation on which panels are monitored by the
operating panel. At the moment the heartbeat is
not supported, therefore we find here a 0 in the
first entry.

Object description:

Object entries:

3.3.2.17 Object 1017: Manufacturer's heartbeat
In this object the "heartbeat" rhythm (Heartbeat) of
the panel is entered in ms. Since the heartbeat-log
is not supported, therefore we find here a 0 in the
first entry.

Object description:

Object entry:

3.3.2.18 Object 1018h: Identity object
This object contains data which identify clearly a
CANopen-device. Here manufacturer identifica-
tion, serial number etc. are generated. A manufac-
turer number is entered in entry 1, which is placed
exclusively by CiA.

Object description:

Object entries:

INDEX 1016h
Name Heartbeat time
Object type Field (ARRAY)
Data type 32 bits without preceding sign

(UNSIGNED32).
D4/D5: heartbeat time
(UNSIGNED16)
D6: Node-ID (UNSIGNED8)

Category Optional

Subindex 0
Description Number of the entries
Category Mandatory
Access Read only
PDO-mapping no
Value 1

Subindex 1
Description Heartbeat-time entry 1
Category Mandatory
Access Read only
PDO-mapping no
Value 0

INDEX 1017h
Name Manufacturer's heartbeat

(Manufacturer Heartbeat)
Object type Individual value (VAR)
Data type 16 bits without preceding sign

(UNSIGNED16)
Category Conditional; mandatory if monitor-

ing is not supported

Access Read only
PDO-mapping no
Value 0

INDEX 1018h
Name Identification object
Object type Data record (RECORD)
Data type Identity
Category Mandatory

Subindex 0
Description Number of the entries
Category Mandatory
Access Read only
PDO-mapping no
Value 4

Subindex 1
Description Manufacturer identification

(Vendor ID)
Category Mandatory
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign
Value 2Dh (Vendor ID GRAF-SYTECO)

Subindex 2
Description Product identification
Category Optional
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32).
Value Panel-dependent:

6100d for ITS/AT 6100 series
6200d for ITS/AT 6200 series etc.
- 45 -

Manual operating panels
3.3.2.19 Object 1200h: Server SDO parameter
In this object the identifier is found which the panel
uses if SDO data are inquired.

Object description:

Object entries:

3.3.2.20 Obj. 1400h: Receive PDO param.
In this object parameters are saved which concern
the PDO reception.

Object description:

Object entries:

Subindex 3
Description Revision number
Category Optional
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32).
Value 1

Subindex 4
Description Serial number
Category Optional
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign
Value Currently. not yet supported. Data

are invalid.

INDEX 1200h
Name Server SDO parameter
Object type Data record (RECORD)
Data type SDO parameter
Category Conditional

Subindex 0
Description Number of the entries
Category Mandatory
Access Read only
PDO-mapping no
Value 2

Subindex 1
Description COB-ID for SDO request SDO Rx

ID from view of the panel
Category Mandatory
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32).
Value 1536 + NodeID

Subindex 2
Description COB-ID for SDO reply

SDO Tx ID from view of the panel

Category Mandatory
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign
Value 1792 + NodeID

INDEX 1400h
Name Receive-PDO parameter
Object type Data record (RECORD)
Data type PDO CommPar
Category Mandatory for each supported re-

ceive PDO

Subindex 0
Description Number of entries (sub-signs)
Category Mandatory
Access Read only
PDO-mapping no
Value 2

Subindex 1
Description Receive-ID (COB-ID)
Category Mandatory
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32).
Value 512 + Node-ID

Subindex 2
Description Type of transfer
Category Mandatory
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign

(UNSIGNED8).
Value FEh (async PDO)
- 46 -

Manual operating panels

3.3.2.21 Obj. 1600h: Receive-PDO mapping
Here the allocation of the receive PDO data to the
object directory is made. Logically the both object
entries of the object 2000h are to be found here.

Object description:

Object entries:

3.3.2.22 Object 1800h: Transmission PDO
parameter
In this object parameters are saved which concern
the PDO transmission.

Object description:

Object entries:

3.3.2.23 Object 1A00h: Transmission-PDO-
mapping
Here the allocation of the receive PDO data to the
object directory is made. Logically the both object
entries of the object 2001h are to be found here.
Object description:

INDEX 1600h
Name Receive-PDO-mapping
Object type Data record (RECORD)
Data type PDO-mapping
Category Mandatory for each supported re-

ceive PDO

Subindex 0
Description Number of the mapped objects
Category Mandatory
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign
Value 2

Subindex 1
Description 1. Mapped object

(Index 2000h Subidx. 1, 32 bit)
Category Conditional; here necessary be-

cause of firm PDO-mapping
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32)
Value 20012000h

Subindex 2
Description 2. Mapped object

(Index 2000h Subidx. 2, 32 bit)
Category Conditional; here necessary be-

cause of firm PDO-mapping
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32)
Value 20022000h

INDEX 1800h
Name Transmission PDO parameter
Object type Data record (RECORD)
Data type PDO CommPar
Category Mandatory for each supported

transmission PDO

Subindex 0
Description Number of entries (sub-signs)
Category Mandatory
Access Read only
PDO-mapping no
Value 2

Subindex 1
Description Transmisstion-ID (COB-ID)
Category Mandatory
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32)
Value 384 + Node-ID

Subindex 2
Description Type of transfer
Category Mandatory
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign

(UNSIGNED8).
Value FEh (async PDO)

INDEX 1A00h
Name Transmission PDO-mapping
Type of object Data record (RECORD)
Data type PDO-mapping
Category Mandatory for each supported

transmission PDO
- 47 -

Manual operating panels

Object entries:

3.3.2.24 Object 2000h: Received data
This object belongs to the manufacturer-specific
objects. The operating panel saves in this object
the data of the PDOs received last according to
the PDO-mapping entered in the object 1600h.

Object description

Object entries:

3.3.2.25 Object 2001h: Transmitting data
This object belongs to the manufacturer-specific
objects. The operating panel saves in this object
the data of the last transmitted PDOs according to
the PDO-mapping entered in the object 1A00h.

Object description

Subindex 0
Description Number of the mapped objects
Category Mandatory
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign
Value 2

Subindex 1
Description 1. Mapped object (Index 2001h

Subidx. 1, 32 bit)
Category Conditional; here necessary be-

cause of firm PDO-mapping
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32)
Value 20012001h

Subindex 2
Description 2. Mapped object (Index 2001h

Subidx. 2, 32 bit)
Category Conditional; here necessary be-

cause of firm PDO-mapping
Access Read only
PDO-mapping no
Data type 32 bits without preceding sign

(UNSIGNED32)
Value 20022001h

INDEX 2000h
Name PDO received data
Type of object Data record (RECORD)

Subindex 0
Description Number of the entries
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign

(UNSIGNED8)
Value 2

Subindex 1
Description Data bytes D0 to D3 of the last re-

ceived PDOs
Access Read only
PDO-mapping yes
Data type 32 bits without preceding sign

(UNSIGNED32)

Subindex 2
Description Data bytes D4 to D7 of the last re-

ceived PDOs
Access Read only
PDO-mapping yes
Data type 32 bits without preceding sign

(UNSIGNED32)

INDEX 2001h
Name PDO transmission data
Type of object Data record (RECORD)

Subindex 0
Description Number of the entries
Access Read only
PDO-mapping no
Data type 8 bits without preceding sign

(UNSIGNED8)
Value 2

Subindex 1
Description Data bytes D0 to D3 of the last

transmitted PDOs
Access Read only
PDO-mapping yes
Data type 32 bits without preceding sign

(UNSIGNED32)

Subindex 2
Description Data bytes D4 to D7 of the last

transmitted PDOs
Access Read only
PDO-mapping yes
Data type 32 bits without preceding sign

(UNSIGNED32)
- 48 -

Manual operating panels
4 SIMATIC S5 1driver
An operating panel that is equipped with the SI-
MATIC-S5 driver can be coupled directly to the
PG-interface of a S5. This interface is installed into
each S5-control.
The data transfer from the S5 to the operating pan-
el is to be done by the driver.
It must be indicated only where the message
pointers are positioned and which data modules
are to be used for nominal values etc.

4.1 Principle function of the driver
The panel is connected directly to the PG-interface
via the (installed) 20mA/TTY-interface. In the ITE
you parameterize the data modules and pointer
bytes over which the image- and message call-ups
as well as variable displays are to be realised.
The S5 driver simulates now a programming panel
with running function "status variable" or"control
variable". It requests data from the PLC and writes
data (nominal values and keys) back into the PLC.
No work is necessary with respect to the operating
panel except for the parameterization of the data
areas. Only the data modules which are parame-
terized in the driver have to be created in the S5-
program.
Additionally the driver functions as "Gateway" be-
tween the CAN-interface of the operating panel
and the PLC. That means the PLC receives indi-
rectly access to the CAN-bus via the operating
panel.
The S5 driver contains the following functions:
• Image call-up (also PRIO images!) via word

bits
• Image call-up via pointers
• Actual value display via data modules
• Nominal value entry into data modules
• Key query via pointers
• Switching on and off LED via pointers
• Influencing panel status via data module
• Access to the CAN-bus which can be con-

nected to the operating panel (via data module)

4.2 Basic considerations
First it has to be planned where the data are cre-
atedfor the operating panel in the PLC:
• Image- and message call-ups as well as key-

and LED-functions are handled via pointers.
The driver needs a related area for all these
functions. Reserve thus a block of relevant
pointer bytes.

• The sequence how the functions are con-
verted to pointer words is always the same.

You can indicate how many pointer bytes per
function are to be used.

• It is always proceeded in pointer-byte steps
per function

• The sequence is always as follows:
- pointer bytes for LED control
- pointer bytes for image call-up
- pointer bytes for priority images
- pointer bytes for messages.

• Maximum 32 pointers can be used for image/
message call-ups (sum!). If this is not suffi-
cient, then further call-ups can be made via the
"Gateway"-function.

• Maximum 40 pointer bytes are necessary for
these functions (32 for call-up, 8 for LEDs).

• Nominal- and actual values (variables) are
also exchanged via data modules. It is possi-
ble to parameterize one's own data modules
or/and commonly used data modules for nomi-
nal values, actual values and limits.

• The so-called "Handle" (see chapter "varia-
ble") is used here as number of the data word.
If you therefore read here something about
"Handle", then this is synonymous to "data
word number".

• All variables with a length of 1-16 bits are allo-
cated automatically a complete data word (see
chapter "variables, types")

• Variables with a length of 32 bits are allocated
two successively data words. This is to be con-
sidered when placing handles. Example: If a
Longword-variable has the handle 6, then it
allocates automatically the data words DW6
and DW7 in the data module. Therefore a vari-
able from this data module with the handle 7
should not be used.

• Due to driver restrictions on the PG-interface,
no variables of the same type (nominal values,
actual values, upper-/ lower limit) may be used
within an image whose handles have more
then 64 differences. Example:If the smallest
handle of nominal values amounts to 10 in the
image, then the largest handle of nominal val-
ues may amount only to 74 in the image. An
actual value may have now again e.g. the han-
dle 90, since it belongs to another type. The
"handle difference" may, however, not again
be larger than 64 within the actual values.

• As data index OM2 to OM255 can be selected
arbitrarily.The OMs have, however, to be set
up in the PLC. If a parameterized OM is miss-
ing, then no communication takes place.

• Images and messages have to be numbered
continuously starting from 1 if image/message
call-ups occurs via pointer. The editor allows,
however, gaps, but when using the S5 driver
you have to pay attention to a "complete" crea-
tion.1. The terms SIMATIC and S5 are registered trade-

marks of the Siemens AG
- 49 -

Manual operating panels

• IMPORTANT!!! All fields of the parameter

mask (see below) have to be filled in. Thereby
a data module must be indicated for each
function, even if the function is not used. Oth-
erwise no communication takes place.

In practice it is shown that these rules are very
simple to handle, since the parameterization of the
driver and the variables is possible to do in a very
comfortable manner.

4.3 Parameterization of the driver
You reach the parameter mask for the S5 driver
via the menu "panel"/"parameterize", register card
"serial interface". Click the button "Siemens S5
(AS511)". The following mask appears then:

4.3.1 Field actual values
Indicate here from which data module you want to
deposit the actual values for the driver. Enter here
e.g. OM5 if you want to use OM5 for actual values.
An actual value with the handle 7 is then read from
OM5, DW7.

4.3.2 Field "nominal values"
Enter into this field the designation of the data
module in which the driver is to file nominal values.
Nominal values are always filed then in this mod-
ule if the operator has carried out a nominal value
entry with saving in the operating panel.
Enter the complete designation of the data index,
thus e.g. OM8.
You can indicate the same data module here as
also with the actual values.
The handle of the variables is then again the
number of the data word. Example: You have se-
lected OM8 for nominal values. Then the nominal
value is filed with the handle 20 in OM8 DW20.

4.3.3 Fields "lower limits", "upper limits"
With nominal value entries upper- and lower limits
can be determined for the entry. Here you indicate
from which data modules these limits are to be
fetched if the limits are not set up absolutely as
value but as variables.
Enter the complete designation of the data mod-
ule, thus e.g. OM17.
You can indicate the same data module here as
also with the nominal- and actual values.
The handle of the variables is then again the
number of the data word. Example: You have se-
lected OM17 for nominal values. Then the lower
limit variable with the handle 12 is read from OM17
DW12.

4.3.4 Field "step values"
If you use nominal values with step-processing
you can control the step values also via a variable.
In this field you can now adjust from which OM you
want to read the step values.
Enter the complete designation of the data mod-
ule, thus e.g. OM2.
You can indicate also here the same data module
as in another field.
The handle of the step value-variables is then
again the number of the data word. Example: You
have selected OM2 for nominal values. Then the
step value with the handle 0 is read from OM2
DW0.

4.3.5 Field "status"
Enter here from which data module the operating
panel is to file its current status. The driver needs
this data module in any case, it should not be allo-
cated by nominal-, actual values or limit values.
Therefore indicate here another OM.
This OM is also used for the "Gateway" function;
image/message call-ups are likewise settled via
this OM which cannot be done via the pointer area.
The structure of the "status OM" is described still
later.

4.3.6 Field "image/message"
In this field you parameterize the first pointer byte
which is to be used for the function block "LEDs/
image/message call-up".
Enter the complete designation, thus e.g. MB30.
Then the pointer area starts with MB30 which is
used for the LED control and image/message call-
up.
How many pointer bytes are now needed depends
on the parameterization of the fields "number of
the images", "number of the messages" etc.
- 50 -

Manual operating panels

4.3.7 Fields "number of the images,

messages, priority images, LEDs"
In these fields you indicate respectively how many
pointer bytes you want to reserve for the individual
function. Pay attention that you always work in
steps of 8; you therefore cannot use 12 pointers
for images, then 17 pointers for messages and 11
pointers for priority images.
If you do not use a function, enter then the number
0 for it. Then also no pointer byte is "wasted" for
this function.
An example:
You use ITS6101. You want to call up 25 images
and 25 messages, the 8 LEDs are likewise to be
controlled. Five images as priority images should
be able to appear. Keep an area free from MB50
for the panel.
For 25 images you need 4 pointer bytes (4*8=32
pointers), likewise for the messages. You can con-
trol the priority images via a pointer byte.
A pointer byte (=8 pointer) is sufficient for the
LEDs. 10 pointer bytes from MB50, thus MB50-
MB59 are necessary in all.
Enter the following values for this into the fields:

The driver reads out now MB50-MB59 (10 pointer
bytes) cyclically and rates the pointers individually
as call-ups. Thereby the assignment is as follows:

In order to switch on now a LED at the operating
panel, the appropriate pointer in the PLC program
is simply placed.

4.3.8 Field "keys"
Here you have to indicate where the panel is to
mirror its keys in the pointers.
The complete designation has to be entered e.g.
MB100.
Then the pointer area starts with MB100 where the
panel mirrors its keys.
How many pointer bytes are now needed depends
on the parameterization of the field "number of the
keys".

4.3.9 Field "number of the keys"
Enter how many pointer bytes you want to reserve
for the key status of the operating panel.
Always 8 pointers are reserved at the same time.
Then also only key extensions in steps of 8 are of-
fered for the panel.
Example:
You use an ITS6204 with 32 keys in total. All keys
are to be mirrored in pointers. There are 4 pointer
bytes necessary. You want to use MB60-MB63 as
pointer area. Enter the following entries in the pa-
rameter mask:

Now the operating panel mirrors the keys into the
pointers. The pointers mean now:

Field Input value
Image/message MB50
Number of the images 4
Number of the messages 4
Number of the priority images 1
Number of the LEDs 1

Pointer LED/image/message
M50.0 LED 1
M50.1 LED 2
... ...
M50.7 LED 8
M51.0 Image 0
M51.1 Image 1
....
M51.7 Image 7
M52.0 Image 8
... ...
M54.7 Image 31
M55.0 Image 0, priority set
M55.1 Image 1, priority set
... ...
M55.7 Image 7, priority set
M56.0 Message 1
M56.1 Message 2

... ...
M56.7 Message 8
M57.0 Message 9
... ...
M59.7 Message 32

Field Entry
Keys MB60
Number of the keys 4

Pointer = Key No.
M60.0 1 (1. row, on the left)
M60.1 2
... ...
M60.7 8 (1. row, on the right)
M61.0 9 (2. row, on the left)
....
M63.7 32 (4. row, on the right)
- 51 -

Manual operating panels

Numeric block at ITS/AT 61/67/71/77:
If the numeric keys are to be queried as well, then
8 pointer bytes have to be reserved in any case for
the key query. The numeric keys are then to be
found under the key numbers according to the fol-
lowing table:

The pointers for the keys 49 and 56 are always
placed with 0, please do not use these pointers
further.
The function keys at the ITS6101 have the key
numbers 1-8. If the ITS6106 is used (maximum ex-
tension), then the function keys are numbered
from 1-48. Therefore the numeric keys are mir-
rored into the PLC from key number 50.

4.4 Status data component
The panel keeps the PLC informed concerning op-
erator actions via the status OM. It files which im-
age and which message are just being displayed
and in which operating status it is at the moment.
But also further functions of the operating panel
are actuated via this status area. You have access
to the CAN-bus. Besides you can influence panel
parameters such as contrast and brightness via
the status OM.
The indications of data words made in the follow-
ing description refer always to the data module
which you have entered in the field "status" of the
parameter mask. The following table informs
about the use of data words in the status OM:

4.4.1 Panel status information
The panel informs the PLC according to standard
about the following data words with the contents
specified in the table

4.4.2 CAN-Gateway transmission buffer
The data words DW10-DW15 of the status OMs
are allocated as follows:

Handshake via DW10:
A tuning between PLC user program and the driv-
er/CAN-bus takes place via DW10. The communi-
cation is handled with the following "FB
framework":communication.

Key Key no.
Escape 50
"4“ 51
"6“ 52
"2“ 53
"8“ 54
Enter 55
"0“ 57
"1“ 58
"3“ 59
"5“ 60
"7“ 61
"9“ 62
".“ 63
"+/-“ 64

Data words Function
DW0-DW9 Panel status ITS
DW10-DW15 Transmission buffer for

CAN-Gateway
DW16-DW21 Receive buffer for

CAN-Gateway

Data word Content of the data word
DW0 Image number of the currently dis-

played image
DW1 Message number of the currently

indicated message
(0=no message is displayed)

DW2 Panel status, see
“REPORT_STATUS (0x0A)” on
Page 9

DW3 Number of the active images
DW4 Number of the active messages
DW5-DW9 not allocated, reserved

Data word Function
DW10 Handshake.

KH 0000: Transmission buffer free
KH=FFFF: Transmission buffer al-
located

DW11 CAN-identifier
Here the user program must enter
the addressee.
Address 0 is the operating panel it-
self.

DW12 Telegram type/CAN user data
DW13 Function word 0/CAN user data
DW14 Function word 1/CAN user data
DW15 Function word 2/CAN user data

:A OM ... Select status OM
:L KH 0 Free identification
:L DW 10 checking
:><F Transmitter free?
:BEB If not, end
:
:...... Enter here
:...... transmission data
:...... into DW11-DW15
:

- 52 -

Manual operating panels
Thus it can be prevented that the PLC outputs
data too quickly to the CAN-bus or the operating
panel itself.

Telegram type and function words:
The telegram type and the function words are de-
pendent on the addressee in D11:

Transmissions to the panel, DW11 KH=0:
The following commands can be placed with the
ITS/AT via the transmission buffer (status OM):

These data are formatted in approximation to the
CAN data format.“Description of the telegram
types” on Page 4

4.4.3 CAN-Gateway receive buffer
Before you want to access too enthusiastically to
the CAN-bus: take into account that a transfer rate
of up to 1 MBit/s can be adjusted on the CAN-bus.
On the PG-interface 9600 bauds are adjusted firm-
ly of which approx. 75% for the log have to be
counted. Thus there remain net approx. 2400
bauds.

:L KH FFFF Enter transmission
:T DW 10 identification
:BE

DW11: KH=0000
Data for the operating panel at the PG-inter-
face

DW11:KH=xxxx
(Data are deter-
mined for the CAN-
bus)

DW12
Telegram type
- image call-up
- delete image
- message call-up
- delete message
- parameter commands

DW12 KH=aabb
CAN user data: aa
= byte0
bb = byte1

DW13
Function word 1
(allocated corresponding to the telegram
type DW12, see following section)

D13 KH=ccdd
CAN user data:cc
= byte2
dd = byte3

DW14
Function word 2
(allocated corresponding to the telegram
type DW12, see following section)

D13 KH=eeff CAN
user data:ee =
byte4
ff = byte5

DW15
Function word 3
(allocated corresponding to the telegram
type DW12, see following section)

D15 KH=gghh
CAN user data:gg
= byte6
hh = byte7

Telegram type in
DW12

Function word 1-3
DW13 - DW15

KF=+2
Transmitting varia-
ble
(set value)

DW13: Handle of the variables
DW14: Variable value (low word)
DW15: Variable value (high word)

KF=+4
Message call-up

DW13: Number of the message being
called up from KF=+1 to KF=+9999
DW14/15: not used

KF=+5
Deliver message

DW13: Number of the message being
called up from KF=+1 to KF=+9999
DW14/15: not used

KF=+6
Call up image

DW13: Number of the message being
called up from KF=+1 to KF=+9999
DW14/15: not used

KF=+7
Deliver image

DW13: Number of the message being
called up from KF=+1 to KF=+9999
DW14/15: not used

KF=+8
Call up priority im-
age

DW13: Number of the message being
called up from KF=+1 to KF9999
DW14/15: not used

KH=15xx Set panel parameters.

KH=1500
Place global soft-
key mask

DW13: Bit mask for soft keys,
KH=00xx
bit 0 = not allocated
bit 1 = menu key 1
bit 2 = menu key 2
...
bit 6 = menu key 6
bit 7 = not allocated
If the bit of a key is placed, then the soft key
function is placed for this key and the menu
function is switched off. If the bit is 0, then
the menu function of the key is activated.
DW14/15: not used

KH=1501
Set contrast

DW13: Contrast value 0-23 (KF=+0 to
KF=+23). 23 is maximum contrast
DW14/15: not used

KH=1502
Brightness of the
background light-
ing

DW13: Brightness value 0-7 (KF=+0 to
KF=+7). 7 is maximum brightness.
DW14/15: not used

KH=1503
Status line on/off

DW13: Status line function
KF=+0 to KF=+2
0: Status line faded in
1: Status line faded out
2: as defined in the image
DW14/15: not used

KH=1504
Position of the sta-
tus line

DW13: Line number of the status line
0-7 (KF=+0 to +7). 0 is the topmost line.
DW14/15: not used

KH=1505
Scrolling time of
the messages

DW13: Scrolling time in seconds
from KF=+0 to KF=+32
0 = "scrolling off"
DW14/15: not used

KH=1506
Scrolling time of
the images

DW13: Scrolling time in seconds
from KF=+0 to KF=+32
0 = "scrolling off"
DW14/15: not used

KH=1507
Key allocation of
the menu keys

DW13: KH=uuvv with
uu=number of the ESC key
vv=number of the key "arrow on the left"
DW14: KH=wwxx
vv=number of the key "arrow on the right"
vv=number of the key "arrow downwards"
DW15: KH=yyzz
vv=number of the key "arrow upwards"
zz=Number of the Enter key

KH=1508
Message output

DW13: KH=0000 switching off
KH=0100 switching on
DW14/15: not allocated
- 53 -

Manual operating panels

If now a CAN-module relocates a telegram only 10
times per second, then the receive buffer ought to
be written into the PLC 10 times per second, and
at the same time the pointer-bytes and the varia-
bles to be read out - impossible!
Therefore why this whole thing?
Consider that e.g. one operating keyboard can be
connected to the operating panel via the CAN-bus.
Somehow you ought to be informed when a key is
pressed on the operating keyboard - and this func-
tions only via the operating panel. And to tell you
the truth: so simply can you connect no other key-
boards to the PLC as over the CAN-bus.
The operating keyboard transmits now each time
a CAN-news to the operating panel if a key is
pressed. The driver files then this telegram in the
receive buffer.
Realistically seen an operator will press a key only
2-3 times per second - and the operating panel
can buffer this still also, if necessary. Therefore it
has a CAN-FIFO buffer with 20 telegrams depth.
If you signalise the operator via an LED that his
key stroke has been registrated, then he will not
begin to hammer like mad on the keyboard.
But now to the description of the data words of the
receive buffer. Also the receive buffer has a hand-
shake word available with whose help the data
transfer is controlled as well as the information
bytes:

Transmissions from the panel: DW17 KH=0000
Currently no telegrams from the operating panel
are defined at the PLC. All functions are handled
via pointers and data modules.

Transmitting CAN module: DW17 KH=xxxx:
In this case the CAN telegram of the transmitter is
written on a one-to-one basis into the receive buff-
er. Thus the bytes are filed as follows:

The contents of the CAN telegram is dependent on
the panel which has sent the telegram. Look up
therefore in the manual on this panel if you have to
determine the contents of the telegrams.

4.4.4 CAN identifier DW11 and DW17
The CAN-identifiers is composed of 16 bits in total.
The individual bits have the following meaning:

In the bits 0-3, DLC (data length code) it is indicat-
ed how many bytes of user data the CAN telegram
contains. This value can be 0 to 8. A CAN tele-
gram can contain maximum 8 bytes of user data.
The RTR-bit (R) is currently not used. Set it thus
on 0.
The ID-bits 0-10 must contain the number of the
panel. These are placed mostly via DIP-switch or
jumper. Further details can be obtained from the
manual of the respective panel.

4.4.5 " Examples for the Gateway
With the help of an interconnection of a Siemens
S5, an ITS 6101 and an ITS 6303 we want to dem-
onstrate the data transfer via the status OM. We
assume that the ITS6101 and the S5 communi-
cate via the PG interface and that the ITS6303 is
connected to the ITS6101 via the CAN-bus.6101
6101 The panel address of the ITS6101 at the
CAN-bus is not of importance; the ITS6303 is ad-
justed to the address 5.
6303 The task is now to detect if a key has been
pressed on the ITS6303, likewise the LEDs on the
keyboard are to be placed.

Data word Function

DW16 Handshake.
KH 0000: Receive buffer empty
KH=FFFF: Data in the buffer

DW17 CAN-identifier
Here the user program in the PLC receives
the address of the transmitter.
Address 0 is the operating panel itself.

DW18 Telegram type/CAN user data

DW19 Function word 0/CAN user data

DW20 Function word 1/CAN user data

DW21 Function word 2/CAN user data

Data word Contents
DW17 CAN identifier (Transmitter ad-

dress) in the format according to
11.2.5

DW18 CAN user data KH=aabb
aa = byte 0
bb = byte 1

DW19 CAN user data KH=ccdd
cc = byte 2
dd = byte 3

DW20 CAN user data KH=eeff
ee = byte 4
ff = byte 5

DW21 CAN user data KH=gghh
gg = byte 6
hh = byte 7

15-5 4 3-0
Identifier R DLC
x x x x x x x x x x x x 1 0 0 0
- 54 -

Manual operating panels

We want to do it in such a way that the LED of a
key is to light up as long as until the key is pressed.
Briefly a trip into the function of the ITS6303: it be-
haves in such a way that key activations are out-
putted automatically to the CAN-bus. This takes
place by means of the REPORT_KEY_DATA tele-
gram. See “REPORT_KEY_DATA (0x17)” on
Page 17 . With this telegram the number of the key
is communicated respectively and also whether
the key has been pressed or released. You re-
ceive as additional information the status of the
first 4 key rows in terms of bits.
With the telegram SET_LED we set/reset then the
respective LED. “SET_LED (0x16)” on Page 16
We have to reserve 4 pointer bytes for these func-
tions (here we remember the status of the keys
and the last key stroke). Besides we need the sta-
tus OM.
We use:
MB10 for keys 1-8
MB11 for keys 9-16
MB12 for keys 17-24
MB13 Number of the last key
OM10 Status module

The following PLC-program performs our task. It
consists of 2 function modules:
Evaluation of the key data:
FB11 Transmitting the LED information

First we want to determine the CAN identifier for
the ITS6303. The panel has the address 5 (ID = 5)
and always 8 bytes of user data in the telegram.
Thus DLC=8. Coded terms of bits we receive:

As CAN identifier we must therefore use KH=0128
for the ITS 6303.

Evaluation of the key data, FB10:

The second part of our task, setting the LED is be
done with the following program:

Now you have to call up these both FBs still cycli-
cally from the OB1.
You see: it is really simple to use the Gateway to

15-5 4 3-0
Identifier R DLC
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 1 2 8

:A OM 10 Status OM
:L KH FFFF Status query
:L DW 16 with handshake
:><F something there ?
:BEB no.
:L DW 17 yes, from whom?
:L KH 0128 from ITS6303 ?
:><F test
:SPB =M001 not from him
:L DW 19 Key number

:SRW 8 read out
:T MB 13 and remember
:L DW 20 Keys 1-16
:T MW 10 remember
:L DW 21 Keys 17-24
:SRW 8 standardize
:T MB 12 and remember

M001 :L KH 0 make the
:T DW 16 receive buffer free
:BE that is it done.

:L MB 13 query key code
:L KF +0 is one there ?
:!=F let's look
:BEB no nothing.
:A OM 10 Status OM
:L KH FFFF Look whether
:L DW 10 the transmission

buffer is free
:!=F if it is allocated
:BEB then there is no

action
:L KF +4 Reception: setting
:UN M 13.7 Key status
:SPB =M001 querying: set
:L KF +5 released: OFF

M001 :L KH 1600 transmitting: LED
DATA

:OW and function
:T DW 12 as user data 0, 1
:R M 13.7 Key code
:L MB 13 loading, = LED

No.
:SLW 8 User data 3
:T DW 13 the number
:L KH 0128 Enter identifier
:T DW 11 for ITS6303
:L KH FFFF signalise: Trans-

mitting
:T DW 10 buffer filled
:L KF +0 and still yet
:T MB 13 deleting MB13:

ready
:BE
- 55 -

Manual operating panels

the CAN-bus. Fill up simply the data words and
query; that is already everything.
By the way: Do not forget to set the handshake
fields DW10 and DW16 to 0 when restarting the
PLC. Otherwise these FBs do not start. You have
to set the MB13 likewise on 0, in order to start up
no wrong LED. You should thus place these 5 pro-
gram lines into OB21/OB22:

In the pointer bytes MB10 to MB12 you have
fetched with these few program lines the status of
24 keys from the CAN-bus and controlled the ap-
propriate LEDs. Fantastic, isn't it?

Here we can close the description of the driver for
the S5.

:A OM 10 Status OM
:L KF +0 Handshakes
:T DW 10 initialise
:T DW 16 for run-up
:T MB 13 and key code off
- 56 -

Manual operating panels
5 Mitsubishi FX
In order to establish a simple connection possibility
for the MITSUBISHI FX series, the operating panel
can be supplied with a RS422-interface and be
plugged directly to the PG-interface of the FX.
Please order the operating panel with the appropri-
ate interface (RS422) if you want to couple to the FX.
The operating panel is then connected via an inter-
face adapter (Order No. M232A or M232B) via the
20mA/TTY-interface to the PC.
The operating panel effects the data transfer via
the interface. You only need to file the necessary
pointer and variable data in the PLC - the access
occurs parameterized by the operating panel.
Therefore you do not need to provide a "transfer
program code" in your PLC-program.

5.1 Principle function of the driver
The data areas are parameterized in the editor ITE
to which the operating panel is to access. It is not
necessary to assign each individual message or
variable. A sort of initial address is indicated for the
individual data and then the space ("offset") to this
initial address is indicated via the handle number.
The operating panel provides now that a perma-
nent data exchange takes place with the message
pointers and the nominal/actual values indicated
currently in the image. This is done without the
help of the PLC.
The FX driver allows the following functions:
• Image call-up (also PRIO images!) via word bits
• Image call-up via pointers
• Actual value display of data indexes
• Nominal value entry into data index
• Key query via pointers
• Switching-on and off LED via pointers
• Influencing the panel status
• Access to the CAN-bus which can be con-

nected to the operating panel ("Gateway")

5.2 Basic considerations
You must first plan where you set up the data for
the operating panel in the PLC. Observe the fol-
lowing specifications for this:
• Image- and message call-up as well as key-

and LED-functions are handled via pointers.
The operating panel needs a related area for
all these functions. Therefore receive a block
of pointer bytes (8 pointer steps) that belong
together.

• Images and messages have to be numbered
continuously starting from 1 if image/message
call-ups occurs via pointer. The editor allows,
however, gaps, but when using the FX-driver
you have to pay attention to a "complete" crea-
tion.

• The sequence on how the functions are con-
verted to pointer bytes is always the same.
You can indicate how many pointer bytes per
function are to be used.

• It is always preceded in pointer byte steps (8
pointers) per function

• The sequence is always as follows:
- pointer for LED control
- pointer for image call-up
- pointer for priority images
- pointer for messages.

• Maximum 256 pointers can be used for image/
message call-ups (sum!). If this is not sufficient
then further call-ups can be made via the
"Gateway"-function.

• Maximum 320 pointers are necessary for
these functions (256 for call-up, 64 for LEDs)

• Nominal- and actual values (variables) are
also exchanged via data indexes. It is possible
to parameterize a commonly-used data index
area for nominal values, actual values and lim-
its.

• The so-called "Handle" (see chapter "varia-
bles") is added to the parameterized value of
the data index ("offset"). If you therefore read
here something about " handle", then this is
synonymous to "data index offset". Of course,
you can adjust the initial address for all data
types equally. It is anyway the simplest if you
adjust respectively the 0 for the data
index(except status - more later on this).
Because then the handle number which you
adjust for variables is identical with the data
index number. Thus you see immediately with
the help of the handle number to which data
index (or the operating panel) you access.

• All variables with a length of 1-16 bits are allo-
cated automatically an entire data index. Vari-
ables with a length of 32 bits are allocated two
successive data indexes. This has to be con-
sidered with the placement of handles. Exam-
ple:If a Longword-variable has the handle 6,
then it is allocated automatically two data
indexes (e.g. D6 and D7). Thus no variable
with the handle 7 should be used.

• Due to driver restrictions on the PG-interface,
no variables of the same type (nominal values,
actual values, upper-/ lower limit) may be used
within an image whose handles have more
then 32 differences. Example:If the smallest
handle of nominal values amounts to 10 in the
image, then the largest handle of nominal val-
ues may amount only to 42 in the image. An
actual value may have now again e.g. the han-
dle 90, since it belongs to another type. The
"handle difference" may, however, not again
be larger than 32 within the actual values.
- 57 -

Manual operating panels

• As data index, D0 to D7999 can be selected

arbitrarily.
• IMPORTANT!!! All fields of the parameter

mask (see below) have to be filled in. Thereby
a data index/pointer must be indicated for
each function, even if the function is not
used.Otherwise no communication takes
place.

In practice it is shown that these rules are very
simple to handle, since the parameterization of the
driver and the variables is possible to do in a very
comfortable manner.
You can/must parameterize individually the follow-
ing data types:
• Actual values (data index D0 - D7999)
• Nominal values (data index D0 - D7999)
• Lower limits (data index D0 - D7999)
• Upper limits (data index D0 - D7999)
• Step-values (data index D0 - D7999)
• Status information (data index D0 - D7999)
• Image/message call-up, LEDs (M0 - M1536)
• Keys (M0 - M1536)
With the pointers you have to consider that you
may set the initial address only in steps of 8, oth-
erwise you receive an error message during the
transfer to the operating panel.

5.3 Parameterization of the driver
You reach the parameterized mask for the FX-
driver via the menu "panel"/"parameterize", regis-
ter card "serial interface". Click the button "Mitsubi-
shi FX". The following mask appears then:

Enter in the fields "image/message" and "keys"
each the beginning of a pointer area. Observe that
the pointer number is divisible by 8; thus M0, M8,
M16, M24
You have to enter a data index (D0 - D999) into the
fields actual values, nominal values, lower limits,

upper limits, step-values and status. Enter also the
letter "D", thus e.g. "D100".
In the fields "...x 8 " you have to enter the number
of the "pointer bytes". The operating panel access-
es always in steps of 8 pointers.

5.3.1 Field actual values
Indicate here from which data index you want to
deposit the actual values for the operating panel.
Enter here e.g. D5 if you want to use the data in-
dex D5 for actual values. An actual value with the
handle 7 is then read from the data index D12 (ba-
sis D5 + handle 7 --> D12).

5.3.2 Field "nominal values"
Enter in this field the number of the data index
from which the operating panel is to file nominal
values. Nominal values are always filed then in
these indexes if the operator has carried out a
nominal value entry with saving in the operating
panel.
Enter the complete designation of the data index,
thus e.g. D8.
You can indicate the same data index here as also
with the actual values.
The handle of the variables is then again the offset
of the data word. Example: You have selected D8
for nominal values. Then the nominal value with
the handle 20 is filed in the index D28 (basis D8 +
handle 20 --> D28).

5.3.3 Fields "lower limits", "upper limits"
With nominal value entries upper- and lower limits
can be determined for the entry. Here you indicate
from which data indexes these limits are to be
fetched if the limits are not set up absolutely as
value but as variables.
Enter the complete designation of the data index,
thus e.g. D17.
You can indicate the same data index here as also
with the nominal- and actual values.
The handle of the variables is then again the offset
of the data index. Example: You have selected
D17 for lower limits. Then the lower-limit variable
with the handle 12 is read out from the index D29
(basis D17 + handle 12 --> D29).

5.3.4 Field "step-values"
If you use nominal values with step processing you
can control the step-values also via a variable. In
this field you can now adjust from which data index
you want to read the step-values.
Enter the complete designation of the data index,
thus e.g. D2.
You can indicate also here the same data index as
in another field.
- 58 -

Manual operating panels

The handle of the step-value variables is then
again the offset of the data index. Example: You
have selected D2 for nominal values. Then the
step-value with the handle 0 is read from the index
D2 (basis D2 + handle 0 --> D2).

5.3.5 Field "status"
Enter here from which data index the operating
panel is to file its current status. The operating
panel needs this data index in any case, it should
not be allocated by nominal-, actual- or limit val-
ues. Enter therefore here another index.
This index area is also used for the "Gateway"
function; image/message call-ups are likewise
handled via these indexes, which cannot be done
via the pointer area. Structure of the "status index-
area" see below.

5.3.6 Field image/message
In this field you parameterize the first pointer which
is to be used for the function block "LEDs/image/
message call-up".
Enter the complete designation, thus e.g. M32.
Then the pointer area starts with M32 which is
used for the LED control and image/message call-
up.
How many pointers are now needed depends on
the parameterization of the fields "...x 8“.

5.3.7 Fields number of the images,
messages, priority images, LEDs

In these fields you indicate respectively how many
pointer bytes you want to reserve for the individual
function. Pay attention that you always work in
steps of 8; you therefore cannot use 12 pointers
for images, then 17 pointers for messages and 11
pointers for priority images.
If you do not use a function, enter then the number
0 for it. Then a pointer byte is also not "wasted" for
this function.
An example:
You use ITS6101. You want to call up 25 images
and 25 messages, the 8 LEDs are likewise to be
controlled. Five images as priority images should
be able to appear. Keep an area free from M64 for
the operating panel.
You need 4 pointer bytes for 25 images (4*8=32
pointers), likewise for the messages.
You can control the priority images via a pointer
byte.
A pointer byte (=8 pointer) is sufficient for the
LEDs. Ten pointer bytes from M64, thus M64-
M143 are necessary in all.

Enter the following values for this in the fields:

The operating panel reads out now M64-M143 (80
pointers) cyclically and rates the pointers individual-
ly as call-ups. Thereby the assignment is as follows:

In order to place e.g. an LED, you simply place the
pointer in your PLC-program (just like an output) -
and the LED lights up on the operating panel. It
does not function any simpler.

5.3.8 Field keys
Here you have to indicate where the operating
panel is to mirror its keys in the pointers.
Enter the full designation, thus e.g. M160 (divisible
by 8 !!!).
Then the pointer area starts with M160 where the
operating panel mirrors its keys.
How many pointers are now needed depends on
the parameterization of the field "number of the
keys".

Field Input value
Image/message M64
Number of the images 4
Number of the messages 4
Number of the priority images 1
Number of the LEDs 1

Pointer LED/image/message
M64 LED 1
M65 LED 2
... ...
M71 LED 8
M72 Image 0
M73 Image 1
....
M79 Image 7
M80 Image 8
... ...
M103 Image 31
M104 Image 0, priority set
M105 Image 1, priority set
... ...
M111 Image 7, priority set
M112 Message 1
M113 Message 2
... ...
M119 Message 8
M120 Message 9
... ...
M143 Message 32
- 59 -

Manual operating panels

5.3.9 Field number of the keys
Enter how many pointer bytes you want to reserve
for the key status of the operating panel.
Always 8 pointers are reserved at the same time.
For in the operating panel only key extension in
steps of 8 are offered likewise.

Example:
You use an ITS6204 with 32 keys in total. You
want to have mirrored all keys in the PLC as point-
ers.
Thus you have to reserve 4 pointer bytes. You
want to use M160-M191 as pointer area. Enter the
following entries into the parameter mask:

Now the operating panel mirrors the keys into the
pointers. The pointers mean now:

Numeric block at ITS/AT 6100:
If the numeric keys of the ITS6100 are to be que-
ried as well, then 8 pointer words (=64 pointers)
have to be reserved in any case for the key query.
The first 48 pointers are always assigned to the
function keys. The numeric block is transferred
from the 49. pointer.
The numeric keys are then to be found under the
key numbers according to the following table (Ex-
ample: M0 as basis):.

The pointers for the keys 49 (M48.) and 56 (M55)
are always placed with 0, please do not use these
pointers further.
The function keys at the ITS6101 have the key
numbers 1-8. If the ITS6106 is used (maximum ex-
tension), then the function keys are numbered
from 1-48. Therefore the numeric keys are mir-
rored into the PLC from key number 50.

5.4 Status data index
The operating panel keeps the PLC informed re-
garding operator actions via the status data-index.
It files which image and which message are cur-
rently being displayed and in which operating sta-
tus it is at the moment.
But also further functions are actuated via this sta-
tus area. You have access to the CAN-bus which
can be connected at the operating panel. Besides
you can influence panel parameters such as con-
trast and brightness via the status-area.
The indication of data indexes which have been
made in the following description refer always as
offset to the basic index which you have entered in
the field "status" of the parameter mask (Example:
If D2 stands in the text and you have indicated in
the field "status" D10, then it is the "real" index
D12). The following table informs about the use of
data words in the status area:

5.4.1 Panel status information
The operating panel informs the PLC according to
standard about the following data words with the
contents specified in the table

Field Entry
Keys M160
Number of the keys 4

Pointer = key No.
M160 1 (1. row, on the left)
M161 2
... ...
M167 8 (1. row, on the right)
M168 9 (2. row, on the left)
....
M191 32 (4. row, on the right)

Key Key no. for basis M0
Escape 50 M49
"4 "51 M50
"6 "52 M51
"2 "53 M52
"8 "54 M53
Enter 55 M54
"0 "57 M56
"1 "58 M57
"3 "59 M58
"5 "60 M59
"7 "61 M60

"9 "62 M61
". "63 M62
"+/- "64 M63

Data index Function

D0-D9
D10-D15

Panel status of the operating
panel

Transmission buffer for CAN-
Gateway

D16-D21 Receive buffer for CAN-
Gateway

Data index Contents of the data index

D0 Image number of the currently displayed
image

D1 Message number of the currently displayed
message (0=no message is displayed)

D2 Panel status. “REPORT_STATUS (0x0A)”
on page 9

D3 Number of the active images

D4 Number of the active messages

D5-D9 not allocated, reserved
- 60 -

Manual operating panels

5.4.2 CAN-Gateway transmission buffer
The data words DW10-DW15 of the status DBs
are allocated as follows:

Handshake via D10:
A tuning between PLC user program and the oper-
ating panel/CAN-bus takes place via D10. The
communication is handled with the following "AWL
framework":

If the pointer M1 is now placed, then the transmis-
sion buffer is free and the data may be written into
the transmission buffer.
Thus it can be prevented that the PLC outputs too
quickly data to the CAN-bus (or the operating pan-
el itself).

Telegram type and function words:
The telegram type and the function words are de-
pendent on the addressee in D11:

Transmissions to the operating panel,
D11=K0:
The following commands can be conveyed to the
operating panel via the transmission buffer (status
area):

Data word Function

D10 Handshake.
K0: transmission buffer free
otherwise transmission buffer allocated

D11 CAN-identifier
Here the user program must enter the ad-
dressee.
Address 0 is the operating panel itself.

D12 Telegram type/CAN user data

D13 Function word 0/CAN user data

D14 Function word 1/CAN user data

D15 Function word 2/CAN user data

LD M8000
CMP

K0
D10
M0

D11=K0
Data for the operating panel at the PG-
interface

D11<>K0
Data are deter-
mined for the CAN-
bus

D12
Telegram type
- image call-up
- delete image
- message call-up
- delete message
- parameterize commands

D12 KH=aabb
CAN user data: aa
= byte0
bb = byte1

D13
Function word 1
(allocated corresponding to the tele-
gram type D12, see following section)

D13 KH=ccdd
CAN user data: cc
= byte2
dd = byte3

D14
Function word 2
(allocated corresponding to the tele-
gram type D12, see following section)

D14 KH=eeff
CAN user data: ee
= byte4
ff = byte5

D15
Function word 3
(allocated corresponding to the tele-
gram type D12, see following section)

D15 KH=gghh
CAN user data: gg
= byte6
hh = byte7

Telegram type in
D12

Function word 1-3
D13 - D15

K2
Transmit variables
(set value)

D13: Handle of the variables
D14: Variable value (low word)
D15: Variable value (high word)

K4
Message call-up

D13: Number of the message being called
up from K1 to K9999
D14/15: not used

K5
Deliver message

D13: Number of the message being deliv-
ered from K1 to K9999
D14/15: not used

K6
Call up image

D13: Number of the image being called up
from K1 to K9999
D14/15: not used

K7
Deliver image

D13: Number of the image being delivered
from K1 to K9999
D14/15: not used

K8 Call up priority
image

D13: Number of the priority image being
called up from K1 to K9999
D14/15: not used

K5376 to K5384 Place panel parameters.
Compare “WRITE_PARAM (0x15)” on
page 14

K5376
Place global soft-
key mask

D13: Bit mask for soft keys, KH=00xx
bit 0 = not allocated
bit 1 = menu key 1
bit 2 = menu key 2 bit 6 = menu key 6
bit 7 = not allocated
If the bit of a key is placed, then the soft-key
function is placed for this key and the menu
function is switched off. If the bit is 0, then
the menu function of the key is activated.
D14/15: not used

K5377
Set contrast

D13: contrast value 0-23 (K0 to K23).
23 is maximum contrast
D14/15: not used

K5378
Brightness of the
background light-
ing

D13: brightness value 0-7 (K0 to K7).
7 is maximum brightness.
D14/15: not used

K5379
Status line on/off

D13: Status line function K0 to K2
0: Status line faded in
1: Status line faded out
2: as defined in the image
D14/15: not used

K5380
Position of the sta-
tus line

D13: line number of the status line 0-7 (K0
to K7). 0 is the topmost line.
D14/15: not used
- 61 -

Manual operating panels
These data are formatted in approximation to the
CAN data format. “Description of the telegram
types” on page 4

5.4.3 CAN-Gateway receive buffer
Before you want to access too enthusiastically to
the CAN-bus: take into account that a transfer rate
of up to 1 MBit/s can be adjusted on the CAN-bus.
On the PG-interface 9600 bauds are adjusted firm-
ly of which approx. 75% for the log have to be es-
timated. Thus there remain net approx. 2400
bauds.
If now a CAN-module deposits a telegram only 10
times per second, the receive buffer ought to be
written into the PLC 10 times per second, and at
the same time the pointer-bytes and the variables
to be read out - impossible!
Therefore why the whole thing?
Consider that e.g. one operating keyboard
ITS6300 can be connected to the operating panel
via the CAN-bus. Somehow you ought to be in-
formed when a key is pressed on the ITS6300 -
and this functions only via the operating panel.
And to tell you the truth: so simply you can connect
no other keyboard to the PLC as over the CAN-
bus.
The ITS6300 transmits now each time a CAN-
news to the operating panel if a key is pressed.
The operating panel files then this telegram in the
receive buffer.
Realistically seen, an operator will press a key
only 2-3 times per second. The operating panel
can buffer key entries possibly in a FIFO-buffer
with 20 telegrams depth.
If you signalise the operator via a LED that his key
stroke has been registered, then he will not begin
to hammer like mad on the keyboard.
But now to the description of the data index of the re-
ceive buffer. Also the receive buffer has a handshake
index available with whose help the data transfer is

controlled as well as the information bytes:

Transmissions from the operating panel:
D17=K0
Currently no telegrams from the operating panel
are defined at the PLC. All functions are handled
via pointer and data components.

Transmitting CAN module: D17<>K0:
In this case the CAN telegram of the transmitter is
written on a one-to-one basis into the receive buff-
er. Thus the bytes are filed as follows:

The contents of the CAN telegram is dependent on
the panel which has sent the telegram. Look up
therefore in the manual relating to this panel if you
have to determine the contents of the telegrams.

CAN identifier D11 and D17
The CAN-identifier composes of 16 bits in total.
The individual bits have the following meaning:

In the bits 0-3, DLC (data length code) it is indicat-
ed how many bytes of user data the CAN telegram
contains. This value can be 0 to 8. A CAN tele-
gram can contain maximum 8 bytes user data.
The RTR-bit (R) is currently not used. Place it thus
on 0.

K5381
Scrolling time of
the messages

D13: scrolling time in seconds from K0 to
K32. 0 = "scrolling off"
D14/15: not used

K5382
Scrolling time of
the images

D13: scrolling time in seconds from K0 to
K32.
0 = "scrolling off"
D14/15: not used

K5383
Key allocation of
the menu keys

D13: KH=uuvv with
uu=number of the ESC key
vv=number of the key "arrow on the left"
D14: KH=wwxx with
vv=number of the key "arrow on the right"
vv=number of the key "arrow downwards"
D15: KH=yyzz with
vv=number of the key "arrow upwards"
zz=Number of the Enter key

K5384
Message output

D13: switch off K0
switch on K256

D14/15: not allocated

Data index Function

D16 Handshake.
K0: Receive buffer empty
otherwise data in the buffer

D17 CAN-identifier
Here the user program in the PLC receives
the address of the transmitter.
Address 0 is the operating panel itself.

D18 Telegram type/CAN user data

D19 Function word 0/CAN user data

D20 Function word 1/CAN user data

D21 Function word 2/CAN user data

Data index Contents

D17 CAN-identifier (transmitter address)

D18 CAN user data KH=aabb
aa = byte 0
bb = byte 1

D19 CAN user data KH=ccdd
cc = byte 2
dd = byte 3

D20 CAN user data KH=eeff
ee = byte 4
ff = byte 5

D21 CAN user data KH=gghh
gg = byte 6
hh = byte 7

15-5 4 3-0
Identifier R DLC
x x x x x x x x x x x 0 1 0 0 0
- 62 -

Manual operating panels

The ID-bits 0-10 must contain the number of the
panel. These are placed mostly via DIP-switch or
jumper. Further details can be obtained from the
manual of the respective panel.

5.5 " Examples for the Gateway
With the help of the interconnection of a MITSUBI-
SHI FX, a ITS6101 and a ITS6303, we want to
demonstrate the data transfer via the status index-
es. We assume that the ITS6101 and the FX com-
municate via the PG-interface and that the
ITS6303 is connected to the ITS6101 via the CAN-
bus.
The panel address of the ITS6101 at the CAN-bus
is not of importance; the ITS6303 is adjusted to the
address 5.
The task is now to detect if a key has been pressed
on the ITS6303, likewise the LEDs on the key-
board are to be placed.
We want to do it in such a way that the LED of a
key shall light up as the key is held pressed.
Briefly a trip into the function of the ITS6303: it be-
haves in such a way that key activation's are out-
putted automatically to the CAN-bus. This takes
place by means of the REPORT_KEY_DATA tele-
gram (see “REPORT_KEY_DATA (0x17)” on
page 17). Here the number of the key is trans-
ferred respectively and also whether the key has
been pressed or released. You receive as addi-
tional information the status of the first 4 key rows
bit by bit.
With the telegram SET_LED we set/reset then the
respective LED (see “SET_LED (0x16)” on
page 16).
We have to reserve 4 pointer bytes for these func-
tions (here we remember the status of the keys
and the last key stroke). Besides we need the sta-
tus indexes.

We use:
M0-M7 for relational operations
M80-M87 for keys 1-8
M88-M95 for keys 9-16
M96-M103 for keys 17-24
M104-M119 temporary pointers
D30 Number of the last key
D0 Status component

The following PLC-program performs our task.

First we want to determine the CAN identifier for
the ITS6303. The panel has the address 5 (ID = 5)
and always 8-byte user data in the telegram. Thus
we receive DLC=8. coded bit-by-bit:

Bit No.

As CAN identifier we must therefore use KH=0128
for the ITS6303. This corresponds to the decimal
number K296 accordingly.

Evaluation of the key data:

Simple, isn't it? Nearly like querying an input mod-
ule. Think over that you have connected 24 keys
quasi free-of-charge additionally to the PLC and
can query in the pointers M80-M103.
The second part of our task, the placement of the
LED is be done with the following program:

15-5 4 3-0
Identifier R DLC
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 1 2 8

LD M8000
CMP Status DB

K0 Status query
D16 with handshake
M0

LD M1 what is there ?
CMP yes, from whom?

K296 from ITS6303 ?
D11 test
M0

LD M1 from ITS6303
MOV Keys 1-16

D20 load into the pointers
K4M80

MOV Keys 17-32
D21
K4M96

MOV Key number
D19 at first
D30 saving

MOV transmission buffer
K0 set free
D10 that is it done.

LD M8000
CMP query key code

D30 is there one there ?
K0 let's look
M0

LDI M1 if not 0: Key
CMP
- 63 -

Manual operating panels

You see: it is really simple to use the Gateway to
the CAN-bus. Fill in simply the data index and que-
ry; that is already everything.
By the way: Do not forget to set the handshake in-
dexes D10 and D16 to 0 when restarting the PLC.
Otherwise these functions do not start. You have
to set the D30 likewise to 0 in order not to trigger
off any wrong LED. Therefore you should use the
following program lines as initialisation program:

In the pointers M80 to M103 you have fetched with
these couple of program lines the status of 24 keys
from the CAN-bus and controlled the appropriate
LEDs. Great, isn't it?

Here we can close the description of the driver for
the MITSUBISHI FX.

K0 transmission buffer free
?

D10
M4 Yes --> M5 set

LD M8000 Key code in pointers
MOV

D30
K4M104 104-119

LD M5 transmission buffer free
?

ANI M119 and pressed ?
MOV

K5636 KH 1604: SET LED
D12 as command

LD M5 transmission buffer free
?

AND M119 and pressed ?
MOV

K5637 KH 1605: RESET LED
D12 as command

LDI M8000 now still the Key No.
OUT M119 without Bit 7
LD M5 transmission buffer free

?
MOV yes, key code=LED

K4M104
D13 in user data 3

MOV
K296 Identifier ITS6303
D11 enter

MOV
K-1 Transmission buffer
D10 Transmitting

MOV
K0 Key code
D30 deleting

LD M8002 Start-up pointer
MOV

K0
D10 Transmission buffer free

MOV
K0
D16 Receive buffer free

MOV
K0
D30 No key is there
- 64 -

Operating panel manual
6 Request/response driver
In order to provide for a simple connection possi-
bility for user-defined controls, the operating panel
can be actuated via an RS232 interface (optional
RS422).
The operating panel effects the data transfer via
the interface. You only have to configure the re-
quired basis addresses for variables, page and
message call-ups, LEDs and keys in the ITE editor
- the operating panel accesses in accordance with
the parameterisation the basis address adjusted
by you. You therefore only have to respond to re-
quests of the operating panel, which considerably
simplifies the programming efforts.

6.1 Interface description:
Interface: RS232C standard
Protocol: described in the following
Baud rate: 300 - 9600 bauds
Parity: no, even, odd
Stop bits: 1,2
Data bits: 8

6.1.1 Interface commands:

Transmission format:
ENQ, ACK and NACK are transmitted as individu-
al commands. All other commands (STX,ETX,
Write,Read) are transmitted within a transmission
frame:

The check sum is transmitted as single character
(byte) according to the ETX code.

Example:

All hex bytes following the byte CMD to ETX are
added up to the check sum.
DLN: Data length code (number of bytes that
are requested)

6.1.1.1 Communication telegrams:

Initialisation check
Operating panel <> control

Max. delay = 500 msec between request and re-
sponse

Charac-
ters

Hex code Description

ENQ 05 hex Enquiry: enquiry of the
operating panel

ACK 06 hex Acknowledge: response
to an ENQ

NACK 15 hex Negative Ack: response
in case of a transmission
error

STX 02 hex Start of text: start byte of
a telegram

ETX 03 hex End of text: end code of
a telegram

WRITE 31 hex Operating panel trans-
mits data to the control

READ 30 hex Operating panel re-
quests data from the
control

STX CMD High Low DLN ETX Check
sum

REA
D

TOP
AD-
DRE
SS

02h 30h 10h 00h 04h 03h 47h
 30h + 10h + 00h + 04h + 03h = 47h
- 65 -

Operating panel manual

6.1.1.2 Read telegram

6.1.1.3 Write telegram

6.2 General driver function
The communication model of the "request/re-
sponse" driver is reproduced in accordance with
the data access and the memory organisation of a
PLC.
The operating panel reads from/writes into data
and flag areas of the control. Address and size of
the data blocks to be transferred are contained in
the "read/write" telegrams.
The control behaves passively and only responds
to the "enquiries" (read/write) of the operating pan-
el. This considerably simplifies the programming
efforts for the communication driver on the control
side.

The data areas which are to be accessed by the op-
erating panel are parameterised in the ITE editor. It
is not necessary to assign each message or varia-
ble individually. A kind of initial address is specified

for the individual data and the offset to this initial ad-
dress is indicated via the handle number.

The operating panel now ensures that a perma-
nent data exchange with the message flags and
the nominal/actual values currently being dis-
played on the page is performed. This is done
without the help of the control.
The "free request/response" driver incorporates
the following functions:
• Page call-up (also PRIO pages!) via flags.
• Message call-up via flags.
• Actual value display from data indexes.
• Nominal value entry into data indexes.
• Key request via flags.
• Switching LED on and off via flags.
• Influencing the device status.
• Access to the CAN bus which can be con-

nected to the operating panel ("gateway").

6.2.1 Name agreements
In the following description on the driver configura-
tion, terms from the PLC environment such as flag,
flag byte, data index etc. are used. Within this con-
text, the following agreement applies:

6.2.2 Basic considerations
You first have to plan where you store the data for
the operating panel in the control. Please observe
the following specifications within this context:
• Page and message call-ups as well as key and

LED functions are processed via flags (bit-ori-
ented). The operating panel needs a related
area for all these functions. For this reason,
please reserve a block of related flag bytes.

Flag M Bit 0..7
within a
flag byte

Bit position within a data
byte, addressable via
address in the read/write
telegram.

Flag
byte

MB 1 byte Addressable via address
in the read/write tele-
gram.

Data
word

D 2 bytes Addressable via address
in the read/write tele-
gram.

Examples:
Basis address = A102
Flag M102.5 = bit 5, within the data bytes under
address 102hex.
Data word D102 = 16bit (2 bytes)
Data under address 102hex (occupies address
102hex and 103hex) --> the next addressable
data word is D104 (address 104hex).
Flag byte M102 = 1 byte date under address
102hex.
- 66 -

Operating panel manual

• Pages and messages should be numbered

consecutively starting from 0. Based on the
basis address adjusted in the ITE editor, the
page/message number is assigned to the
respective "bit".
Example: PageNo.=9,
adjusted basis addr. = 100hex --> bit1 of the
addr. 101hex is assigned to page 9.

• The transcription of functions to flag bytes is
always executed in the same sequence. You
can specify how many flag bytes are to be
used per function.

• The transcription of each function is always
executed in flag bytes steps (8 flags).

• The sequence is always as follows:
- Flags for LED actuation
- Flags for page call-up
- Flags for priority pages
- Flags for messages.

• A maximum of 256 flags can be used for page/
message call-ups (total!). If this is not suffi-
cient, further call-ups can be made via the
"gateway" function.

• A maximum of 320 flags is required for these
functions (256 for call-ups, 64 for LEDs).

• Nominal and actual values (variables) are
exchanged via data indexes. It is possible to
parameterise a commonly used data index
area for nominal values, actual values and lim-
its.

• The handle is added to the parameterised
value of the data index ("offset"). Whenever
you come across the term "handle", it is syn-
onymously used to "data index offset". Of
course you can adjust the same initial address
for all data types. The easiest thing would be
anyway to set 0 for each data index (except
status - more details later on). Then, the han-
dle number which you adjust for variables is
identical with the data index number. Thanks
to the handle number you then immediately
realise which data index you (or the operating
panel) access.

• All variables with a length of 1-16 bit automati-
cally occupy an entire data index.

• Variables with a length of 32 bit occupy two
successive data indexes. This fact has to be
considered when assigning handles. Example:
If a longword variable has handle 6, it auto-
matically occupies two data indexes (e.g. D6
and D7). This is why no variable with handle 7
should be used.

• Due to driver restrictions on the serial inter-
face, no variables of the same type (nominal
values, actual values, upper/lower limit) must
be used within a page whose handles are
characterised by a difference of more than 64.
Example: If the smallest handle of nominal val-

ues amounts to 10 on the page, the largest
handle of nominal values may only amount to
74 on the page. In contrast, an actual value
may have, e.g., handle 90, as it belongs to
another type. The "handle difference" within
the actual values must, however, not exceed
64.

• As data index, D0 to D9999 can be selected
arbitrarily.

• IMPORTANT!!! All fields of the parameterisa-
tion mask (see below) must be filled in. Here, a
data index/flag must be indicated for each
function, even if the function is not used. Oth-
erwise no communication takes place.

• Practical applications have proven that these
rules are very easy to handle due to the com-
fortable parameterisation of the driver and the
variables.

• You can/must parameterise the following
areas (16 bit HEX addresses) individually:
Actual values (address A0 - AFFFF)
Nominal values (data index A0 - AFFFF)
Lower limits (data index A0 - AFFFF)
Upper limits (data index A0 - AFFFF)
Step values (data index A0 - AFFFF)
Status information (data index A0 - AFFFF)
Page/message call-up, LEDs (A0 - AFFFF,
flag-oriented)

• Keys (A0 - AFFFF, flag-oriented)

6.3 Driver parameterisation
The parameterisation mask for the "request/re-
sponse" driver can be accessed via the "Device"/
"Parametrize" menu, in the "Serial interface" index
card. Click the "request/response" button. The fol-
lowing mask shows up:

Enter the respective beginning of a flag area in the
- 67 -

Operating panel manual

"Page/message" and "Keys" fields, e.g. A1F0 for
address 1F0hex.
Enter a basis address in HEX format (A0 - AFFFF)
into the actual values, nominal values, lower limit,
upper limit, step values and status fields. Also en-
ter the letter "A", e.g. "A5DC0" for the address
5DC0hex.
Into the "...x 8 " fields, you have to enter the
number of "flag bytes". The operating panel al-
ways accesses in steps of 8 flags.

6.3.1 "Actual values" field
Indicate in this field the address with which you
want to start depositing the actual values for the
operating panel. Enter here, e.g. A6 if you want to
use the address 0006hex for actual values. An ac-
tual value with handle 7 is then requested by
means of the address 0014hex (basis addr. =
0006hex + handle 7 * 2bytes [2 bytes are reserved
for each variable handle] --> 0014hex).

6.3.2 "Nominal values" field
Enter the HEX address with which the operating
panel is to start storing the nominal values. Nomi-
nal values are stored under this address whenever
the operator has carried out a nominal value entry
with saving in the operating panel.
Enter the complete designation of the basis ad-
dress, e.g. A100.
You can indicate the basis address which you
used for the actual values.
The handle of the variables is again the offset of
the adjusted address (2 bytes offset per variable
handle number).
Example:
You have selected A100 for nominal values. Then,
the nominal value with handle 20 is stored under
the address A128hex (basis A100 + handle 20 [2
bytes per handle] --> 128hex).

6.3.3 "Lower limits", "Upper limits" and
"Step values" fields

When entering nominal values, upper and lower lim-
its can be determined for the entry. In this field, you
determine the addresses with which the operating
panel is to start adopting these limits if the limits are
not specified as absolute values but as variables.
Enter the complete designation of the HEX ad-
dress, e.g. A1017.
You can indicate the address which you used for
nominal and actual values.
The handle of the variables is again the offset of
the basis address. Example: You have selected
A1017 for lower limits. Then, the lower-limit varia-
ble with handle 12 is requested with the address
1028h (basis 1017hex + handle 12 [2 bytes per
handle] --> 1028hex).

6.3.4 "Status" field
Please enter the address with which the operating
panel is to start storing its current status. The op-
erating panel requires this address area in any
case; it should not be occupied by nominal, actual
or limit values. For this reason, please enter anoth-
er basis address here.
This address area is also used for the "gateway"
function. Additionally, page/message call-ups are
settled via this address which cannot be realised
via the flag area.
For the structure of the "status data area" please
refer to below.

6.3.5 "Page/message" field
Parameterise the address area (is evaluated in a
flag (bit)-oriented way) which is to be used for the
"LEDs/page-message call-up" function block.
Enter the complete designation, e.g. A50.
Then, the address area which is used for the LED
control and page/message call-up starts with ad-
dress 50hex.
The number of flags (bits) required depends on the
parameterisation of the "...x 8“ fields.

6.3.6 "...x 8" fields
Specify the number of flag bytes you want to re-
serve for the individual function in this field.
If you do not use a function, enter 0 for the number
of flag bytes. This way, no address is "wasted" for
this function.

An example:
You use ITS6101. You want to be able to call up
25 pages and 25 messages, the 8 LEDs should be
actuated as well. Five pages are to be designed in
a way which enables their availability as priority
pages. They reserve an area deletion address A50
for the operating panel.
For 25 pages you need 4 flag bytes (4*8=32 flags),
the same applies to messages.
The priority pages can be controlled via a flag byte
(8 flags).
For the LEDs only one flag byte (=8 flag) is suffi-
cient. A total of 10 flag bytes starting with address
A50, i.e. A50 - A5A (50 hex to 5A hex) is required.
Enter the following values into the fields:

Field Input value
Page/message A50
Number of pages 4
Number of messages 4
Number of priority
pages

1

Number of LEDs 1
- 68 -

Operating panel manual

The operating panel now cyclically requests the
flag area by means of which a read telegram with
the address 0050hex and a data length of 10 bytes
and classifies the flags individually as call-ups (ad-
dress 50hex - 59hex =80 flags).
 The respective allocation is as follows:

In order to set, e.g., a LED, simply set the flag in
your control program in flag byte, which is as-
signed to the address A50 - and the LED lights up
on the operating panel. There is no easier way.

6.3.7 "Keys" field
Please indicate where the device is to map its keys
to flags.
Enter the complete designation, e.g. A160.
Then, the flag area to which the device maps its
keys starts with A160.
The number of flags required depends on the pa-
rameterisation of the "Number of keys" field.

6.3.8 "Number of keys" field
Enter the number of flag bytes you want to reserve
for the key status of the operating panel.
As a principle, 8 flags at a time are reserved, as
the key extension for the operating panel is also
only possible in steps of 8.

Example:
You use an ITS6204 with a total of 32 keys. All
keys in the control are to be mapped to flags.
Therefore, you need to reserve 4 flag bytes. You
want to use A160-A163 as address area.
Enter the following entries into the parameterisa-
tion mask:

Now, the operating panel transmits the key status
as write telegram with the address 0160hex and
the data length 4 bytes (for the telegram format,
please refer to Section 1.2.1). The flag bytes
(flags) under the address A160 have now the fol-
lowing meaning:

Number pad with ITS/AT 6100:
If the number keys of the ITS/AT 6100 are to be
called up as well, 8 flag words (=64 flags) must be
reserved in any case for the key call-up. The first 48
flags are always assigned to the function keys. The
number pad is transferred starting with the 49th flag.
The number keys can then be found under the key
numbers contained in the following table (Exam-
ple: M0 as basis):

Flag LED/page/message
A50.0 LED 1
A50.1 LED 2
... ...
A50.7 LED 8
A51.0 Page 0
A51.1 Page 1
....
A51.7 Page 7
A51.8 Page 8
... ...
A54.7 Page 31
A55.0 Page 0, priorised
A55.1 Page 1, priorised
... ...
A55.7 Page 7, priorised
A56.0 Message 1
A56.1 Message 2
... ...
A56.7 Message 8
A57.0 Message 9
... ...
A59.7 Message 32

Field Entry
Keys A160
Number of the keys 4

Address (flags) = Key No.
A160.0 1 (1st row, on the left)
A160.1 2
... ...
A160.7 8 (1st row, on the right)
A161.0 9 (2nd row, on the left)
....
A163.7 32 (4th row, on the

right)

Key Key no. For basis A0
Escape 50 A6.1
"4 "51 A6.2
"6 "52 A6.3
"2 "53 A6.4
"8 "54 A6.5
Enter 55 A6.6
"0 "57 A7.0
"1 "58 A7.1
"3 "59 A7.2
"5 "60 A7.3
"7 "61 A7.4
"9 "62 A7.5
". "63 A7.6
"+/- "64 A7.7
- 69 -

Operating panel manual

The flags for the keys 49 (A6.0) and 56 (A6.7) are
always set to 0, please do not use these flags for
further purposes.
The function keys of the ITS6101 have the key
numbers 1-8. If the ITS6106 is used (maximum ex-
tension), the function keys are numbered from 1-
48. Therefore, the number keys are mapped to the
control starting with key number 50.

6.3.9 Status data indexes
By means of the status data indexes, the operating
panel keeps the control informed on operator ac-
tions. It stores the page and message which is cur-
rently being displayed as well as the current
operating status.
But also further functions of the operating panel
are addressed via this status area. You have ac-
cess to the CAN bus which can be connected to
the operating panel. Furthermore, you can influ-
ence device parameters such as contrast and
brightness via the status area.
The status data indexes (data words) specifica-
tions included in the following description always
refer as offset to the basis address you have en-
tered in the "Status" field of the parameterisation
mask (Example: If D2 stands in the text and you
have indicated A200 in the "Status" field, the "real"
address of the status byte is A204 [2 bytes are re-
served per data index). The following table de-
scribes the use of the data indexes in the status
area:

6.3.10 Device status information
As a standard, the device informs the PLC via the
following data words with the contents specified in
the table:

6.3.11 CAN gateway send buffer
The data words D10-D15 of the status area are as-
signed the following functions:

Handshake via D10:
The user program and the operating panel/CAN
bus are matched to each other via the D10.
If the data index D0 contains the value 0, the send
buffer is free and the data may be written into the
send buffer.
Herewith, the PLC can be prevented from trans-
mitting data too quickly to the CAN bus or the op-
erating panel itself.

Telegram type and function words:
The telegram type and the function words depend
on the addressee in D11:

Data index Function
D0-D9 Device status of the

operating panel
D10-D15 Send buffer for CAN

gateway
D16-D21 Receive buffer for CAN

gateway

Data
index

Contents of the data index

D0 Page number of the currently dis-
played page

D1 Message number of the currently dis-
played message
0=no message is displayed

D2 Device status
D3 Number of active pages
D4 Number of active messages
D5-D9 Not assigned, reserved

Word Function
D10 Handshake.

K0: Send buffer free
otherwise send buffer occupied

D11 CAN identifier
Here, the user program must enter the
addressee. Address 0 is the operating
panel.

D12 Telegram type/CAN user data
D13 Function word 0/CAN user data
D14 Function word 1/CAN user data
D15 Function word 2/CAN user data

D11=0
Data for the operating panel at the PG
interface

D11<>0
Data are deter-
mined for the CAN
bus

D12
Telegram type
- Page call-up
- Delete page
- Message call-up
- Delete message
- Parameterisation commands

D12 KH=aabb
CAN user data:
aa = byte0
bb = byte1

D13
Function word 1
(occupied in accordance with telegram
type D12, refer to the following section)

D13 KH=ccdd
CAN user data:
cc = byte2
dd = byte3

D14
Function word 2
(occupied in accordance with telegram
type D12, refer to the following section)

D14 KH=eeff
CAN user data:
ee = byte4
ff = byte5

D15
Function word 3 (occupied in accord-
ance with telegram type D12, refer to
the following section)

D15 KH=gghh
CAN user data:
gg = byte6
hh = byte7
- 70 -

Operating panel manual

Transmissions to the operating panel, D11=0:
The following commands can be issued to the ITS/
AT via the send buffer (status area):

These data are formatted following the CAN data
format (refer to the “Description of telegram types”
o4n page).

6.3.12 CAN gateway receive buffer
Before you snap too enthusiastically at the CAN
bus, please consider that a transmission rate of up
to 1 MBit/s can be adjusted for the CAN bus. A
maximum of 9600 bauds can be adjusted for the
RS232 interface.
If a CAN module transmits a telegram only 10
times per second, the receive buffer would have to
be written 10 times per second into the control and
at the same time the flag bytes and the variables
would have to be read out - impossible!
What's the point in it?
Consider that, e.g., an ITS6300 operating key-
board can be connected to the operating panel via
the CAN bus. Somehow you must be informed
when a key is pressed on the ITS6300 - and this
can only be realised via the operating panel.
Frankly, there is no easier way to connect other
keyboards to the PLC than via the CAN bus.
The ITS6300 now transmits a CAN message to
the operating panel each time a key is pressed.
The operating panel then files this telegram in the
receive buffer.
Realistically speaking, an operator presses a key
only 2-3 times per second - and, if required, the
operating panel can buffer these key entries in a
CAN-FIFO buffer with a 20 telegram capacity.
If you signalise the operator via LED that his key
stroke has been registered, he will not begin to
hammer like mad on the keyboard.
But now, we will concentrate on the description of
data index of the receive buffer. Also the receive
buffer provides a handshake index on the basis of
which the data transfer as well as the information
bytes are controlled:

Telegram type in
D12

Function words 1-3
D13 - D15

2
Transmitting varia-
bles (set value)

D13: Variable handle
D14: Variable value (low word)
D15: Variable value (high word)

4
Message call-up

D13: Number of the message to be called
up, from 1 to 9999
D14/15: Not used

5
Remove message

D13: Number of the message to be re-
moved, from 1 to 9999
D14/15: Not used

6
Call up page

D13: Number of the page to be called up,
from 1 to 9999
D14/15: Not used

7
Remove page

D13: Number of the page to be removed,
from 1 to 9999
D14/15: Not used

8
Call up priority
page

D13: Number of the priority page to be
called up, from K1 to K9999
D14/15: Not used

5376 to 5384 Set device parameter. “WRITE_PARAM
(0x15)” o13n page

5376
Set global soft-key
mask

D13: Bit mask for soft-keys, KH=00xx
bit 0 = not assigned
bit 1 = menu key 1
bit 2 = menu key 2
...
bit 6 = menu key 6
bit 7 = not assigned
If the bit of a key has been set, the soft key
function is set for this key and the menu
function is switched off. If the bit is 0, the
menu function of the key is activated.
D14/15: Not used

5377
Set contrast

D13: Contrast value 0-15 (0 to 23).
23 is maximum contrast
D14/15: Not used

5378
Brightness of the
background light-
ing

D13: Contrast value 0-7 (0 to 7).
7 is maximum brightness.
D14/15: Not used

5379
Status line on/off

D13: Status line function 0 to 2
0: Status line displayed
1: Status line blanked out
2: As defined on the page
D14/15: Not used

5380
Position of the sta-
tus line

D13: Line number of the status line (0 to 7).
0 is the top line.
D14/15: Not used

5381
Alternating time of
messages

D13: Alternating time in seconds, from 0 to
32. 0 = "alternating off"
D14/15: Not used

5382
Alternating time of
pages

D13: Alternating time in seconds, from 0 to
32. 0 = "alternating off"
D14/15: Not used

5383
Key mapping of
the menu keys

D13: KH=uuvv with
uu=number of the ESC key
vv=number of the "arrow left" key
D14: KH=wwxx
vv=number of the "arrow right" key
vv=number of the "arrow down" key
D15: KH=yyzz
vv=number of the "arrow up" key
zz=number of the Enter key

K5384
Message output

D13:
0 switching off
256 switching on
D14/15: Not assigned

Data index Function
D16 Handshake.

0: Receive buffer empty
otherwise data in the buffer
- 71 -

Operating panel manual
Operating panel telegrams: D17=0
Currently no telegrams from the operating panel to
the PLC are defined. All functions are realised via
flags and data indexes.
CAN module telegrams: D17<>0:
In this case, the CAN telegram of the transmitter is
written on a one-to-one basis into the receive buff-
er. Within this context, the bytes are stored as fol-
lows:

The contents of the CAN telegram depend on the
panel which has sent the telegram. For this rea-
son, please refer to the respective device manual
if you need to determine the contents of the tele-
grams.

6.4 CAN identifier D11 and D17
The CAN identifier consists of a total of 16 bits.
The individual bits have the following meaning:

The bits 0-3, DLC (data length code) indicate how
many bytes of user data are included in the CAN
telegram. This value can be 0 to 8. A CAN tele-
gram can contain a maximum of 8 bytes of user
data.
The RTR bit (R) is currently not used. Therefore,
set it to 0.
The ID bits 0-10 must contain the device number,
which is usually set via a DIP switch or jumper.
Further details can be obtained from the manual of
the respective device.

D17 CAN identifier
Here, the user program in the PLC
receives the transmitter address.
Address 0 is the operating panel.

D18 Telegram type/CAN user data
D19 Function word 0/CAN user data
D20 Function word 1/CAN user data
D21 Function word 2/CAN user data

Data in-
dex

Contents

D17 CAN identifier (transmitter ad-
dress)

D18 CAN user data KH=aabb
aa = byte 0
bb = byte 1

D19 CAN user data KH=ccdd
cc = byte 2
dd = byte 3

D20 CAN user data KH=eeff
ee = byte 4
ff = byte 5

D21 CAN user data KH=gghh
gg = byte 6
hh = byte 7

15-5 4 3-0
Identifier R DLC
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0

0 1 2 8
- 72 -

Operating panel manual
7 VT100 driver
Using the VT100 driver, the operating panel can
be actuated like a VT100 terminal. Also XOn-XOff
control sequences have been implemented.
Pages can be freely created and page contents
subsequently modified via the VT100 control se-
quences. You may also start with a completely
empty page and transfer all information.

7.1 Configuration
With the ITE, the project file VT100.txt is delivered,
which represents an empty screen and initialises
the VT100 driver. This project contains the follow-
ing presettings:

• "Page 0" is defined as empty page, i.e. neither
texts, graphics nor variables are available on
this screen page.

• ("Page 0" is the displayed screen page after a
"power-up" of the operating panel.)

• In the "Device/Parametrize/Programs" folder,
the current TOS and driver versions
IO042S00.hex (TOS) and VT042S00.drv
(VT100 driver) have been selected.

• In the "Device/Parametrize/Device" folder, the
device version ITS6100 has been selected.

• In the "Device/Parametrize/Serial interface"
folder, the setting "VT100 driver" and the VT
option "0" ("0"=standard key codes, "1"=addi-
tional codes) have been selected. The inter-
face parameters have been set to 9600 bauds,
2 stop bits, 8 data bits, no parity.

If required, you may now modify the adjusted val-
ues and transfer the project to the operating panel.
For this purpose, connect the operating panel to
your PC using the ITK100 adapter and transfer
your project into the device.

After switching on the operating panel, a publicity
page appears for approx. 2 sec. (can be created in
the ITE editor, refer to the Operating panel manu-
al). Lines 7 and 8 of the publicity page display the
respective versions of BIOS (firmware), TOS (op-
erating system), driver as well as the project name
(UserData).
If the VT100 driver has been loaded, "DRV:VT"
appears in line 7 of the publicity page. The blinking
of the "VT" driver identification indicates that the
driver and the operating system (TOS) are incom-
patible. Ensure that the version numbers of the
driver and the TOS are identical (Device/Para-
metrize/Programs folder, e.g. IO042S00.hex and
VT042S00.drv for version 042S00).

After the start-up time (approx. 2 sec) has been
expired, the configured empty page (page 0) is
displayed. The communication via VT100-inter-
face can start (refer to the following protocol de-
scription).

7.2 Description of the VT-100 control
sequences

The following sections describe all Escape and
control sequences of the VT100 driver of the oper-
ating panel series. The sequences have been tak-
en from the VT101 terminal manual of the "Digital
Equipment Corporation (DEC)".

7.2.1 Control character (receive)

Name Mne-
monic

HEX Description

Zero NUL 0x00 Filling sign
(is ignored)

Enquire ENQ 0x05 Transmits response
Bell BEL 0x07 Alarm tone (message

output is activated for
500 msec)

BackSpace BS 0x08 Cursor left
LineFeed LF 0x0A Line down/column

pos. remains un-
changed

VerticalTab VT 0x0B As LF
FormFeed FF 0x0C As LF
Car-
riageReturn

CR 0x0D Position cursor on the
beginning of the cur-
rent line

XON DC1 0x11 XON: Terminal trans-
mission release

XOFF DC3 0x13 XOFF: Terminal must
not transmit any fur-
ther signs

Cancel CAN 0x18 Received sequence
is deleted, substitu-
tion character is dis-
played

Substitute SUB 0x1A As cancel (CAN)
Escape ESC 0x1B Start byte of a

sequence
- 73 -

Operating panel manual

7.2.2 ESC sequences (receive)

Name Mne-
monic

ASCII /HEX sequence Description

Cursor positioning
Cursor up CUU ESC [n A

(1B 5B n 41)
Move cursor upwards by "n"-lines
with n = '0'-'99' (ASCII)

Cursor
down

CUD ESC [n B
(1B 5B n 42)

Move cursor downwards by "n"-
lines with n = '0'-'99' (ASCII)

Cursor right CUF ESC [n C
(1B 5B k 43)

Move cursor to the right by "n"-
lines with n = '0'-'99' (ASCII)

Cursor left CUB ESC [n D
(1B 5B n 44)

Move cursor to the left by "n"-lines
with n = '0'-'99' (ASCII entry)

Cursor
position

CUP ESC [n ; m H
(1B 5B n 3D m 48)

Cursor on line "n" and column "m"
with n,m = '0'-'99' (ASCII entry)

Cursor-
PosHome

CUP ESC [H
(1B 5B 48)

Cursor home position:
"top left"

INDEX IND ESC D
(1B 44)

Cursor 1 line downwards
column position remains (LF)

Reverse
index

RI ESC M
(1B 4D)

Cursor 1 line upwards
column position remains

Next Line NEL ESC E
(1B 45)

Cursor to 1st column in the next
line

Character output
Character ASCII code 20hex - FFhex All ASCII characters as of 20hex

can be displayed (control charac-
ters 0 - 1F hex are not displayed)

Erasing
Erase in
line

EL ESC [K
(1B 5B 4B)

Erase from the cursor position to
the end of the line

Erase in
line

EL ESC [0 K
(1B 5B 30 4B)

Erase from the cursor position to
the end of the line (see above)

Erase in
line

EL ESC [1 K
(1B 5B 31 4B)

Erase from the beginning of the
line to the cursor position

Erase in
line

EL ESC [2 K
(1B 5B 32 4B)

Erase entire line
(cursor line)

Erase in
display

ED ESC [J
(1B 5B 4A)

Erase from the cursor position to
the end of the screen

Erase in
display

ED ESC [0J
(1B 5B 30 4A)

Erase from the cursor position to
the end of the screen (as above)

Erase in
display

ED ESC [1J
(1B 5B 31 4A)

Erase from the beginning of the
screen to the cursor position

Erase in
display

ED ESC [2J
(1B 5B 32 4A)

Erase entire display

Reports
Status
report

DSR ESC [5 n
(1B 5B 35 6E)

Request status. Reply:
ESC [0 n (terminal OK) ESC
[3 n (terminal not OK)

Status
report

DSR ESC [6 n
(1B 5B 36 6E)

Request cursor position. Reply:
ESC [n ; m R (n=line, m=column)
with n,m = '0' - '99'
(ASCII format)

Terminal reset
- 74 -

Operating panel manual
Reset RIS ESC c
(1B 63)

Initiate terminal reset

LED control
Load LEDs DE-

CLL
ESC [q
(1B 5B 71)

All LEDs off

Load LEDs DE-
CLL

ESC [0 q
(1B 5B 30 71)

All LEDs off (as above)

Load LEDs DE-
CLL

ESC [n q
(1B 5B n 71)

LED "n" on (n = LED number) with
n = '0'-'99' (ASCII)

Character attributes
Attribute
reset

SGR ESC [m
(1B 5B 6D)

Switch off attributes:
Font size 8 pixels
Normal representation
(no blinking)

Attribute
reset

SGR ESC [0 m
(1B 5B 30 6D)

Switch off attributes: (as above)

Underline SGR ESC [4 m
(1B 5B 34 6D)

Underlined characters

Font
size 16

SGR ESC [5 m
(1B 5B 35 6D)

Font size 16 pixels

Font
size 32

SGR ESC [6 m
(1B 5B 36 6D)

Font size 32 pixels

Reverse SGR ESC [7 m
(1B 5B 37 6D)

Reverse characters

Blinking
"ON“

"SGR ESC [8 m
(1B 5B 38 6D)

Blinking characters

Blinking
"OFF“

"SGR ESC [9 m
(1B 5B 39 6D)

"Blinking" function is deactivated

Special telegrams (operating panel extensions)
Signalling
output OFF

EXT ESC [0 x
(1B 5B 30 78)

Deactivate signalling output

Signalling
output ON

EXT ESC [1 x
(1B 5B 31 78)

Activate signalling output

Cursor OFF EXT ESC [2 x
(1B 5B 32 78)

Cursor is no longer displayed

Cursor ON
(block)

EXT ESC [3 x
(1B 5B 33 78)

Cursor is displayed as block

Cursor ON
(underline)

EXT ESC [4 x
(1B 5B 34 78)

Cursor is displayed as "underline"

Adjust dis-
play bright-
ness

EXT ESC [n l
(1B 5B n 6C)

Set brightness (n) of the display
with n = '0'-'7' (ASCII)

Adjust dis-
play con-
trast

EXT ESC [n C
(1B 5B n 63)

Set contrast value (n) for the dis-
play with n = '0'-'23' (ASCII)
- 75 -

Operating panel manual

7.2.3 Key codes
(Terminal transmitted characters)

• Keys only transmit their code with a positive
edge ("key released" is not reported).

• Answer-back telegram (= answer to an ENQ of
the control) has been implemented. The
answer-back telegram is an identification
string with a maximum of 20 characters (in the
operating panel series, the answer-back string
is determined as an 'operating panel' con-
stant).

Name Sequence / Code Description
Cursor keys (only ITS7000 series)
Up ESC [A Cursor up is pressed
Down ESC [B Cursor down is pressed
Right ESC [C Cursor right is pressed
Left ESC [D Cursor left is pressed
Number keys (hex format)
0 0x30
1 0x31
2 0x32
3 0x33
4 0x34
5 0x35
6 0x36
7 0x37
8 0x38
9 0x39
 . 0x2C Comma
+/- 0x2D Minus
Enter 0x0D Enter
ESC 0x1B Escape
BS 0x08 Back Space
Function keys
F1 'A' (0x41) F1 transmits an ASCII 'A'
F2 'B' (0x42) F2 transmits an ASCII 'B'
F3 'C' (0x43) F3 transmits an ASCII 'C'
F4 'D' (0x44) F4 transmits an ASCII 'D'
F5 'E' (0x45) F5 transmits an ASCII 'E'
F6 'F' (0x46) F6 transmits an ASCII 'F'
F7 'G' (0x47) F7 transmits an ASCII 'G'
F8 'H' (0x48) F8 transmits an ASCII 'H'
- 76 -

Operating panel manual
7.3 VT100 driver extensions
In the "option = 1" setting, the following additional
control sequences are available:

7.3.1 ESC sequences (receive)

7.3.2 Transmitted key codes

Name Sequence Description
Cursor
posi-
tioning

ESC=XY X: line position 1 to 8
Y: column pos. 1 to 40
X-value is between 0x20
and 0x27 (line 1 to 8)
Y-value is between 0x20
and 0x66 (column 1 to 40)
Example: 1B 3D 21 26
(line 2, column 7)

Line
erasing

ESC T
(1B 54)

The entire line of the cur-
sor is erased

Display
erasing

ESC +
(1B 2B)

The entire display is
erased

Blinking
start

ESC j
(1B 6A)

The following transmitted
characters are represent-
ed in the "blinking" mode

Blinking
stop

ESC k
(1B 6B)

The "blinking" function is
switched off

Key pressed ASCII HEX
code

Function key F1 'A’ 0x41
Function key F2 'B' 0x42
Function key F3 'G' 0x47
Function key F4 'I' 0x49
Function key F5 'K' 0x4B
Function key F6 'C' 0x43
Function key F7 'F' 0x46
Function key F8 'J' 0x4A
ESC combined with number 1 'D' 0x44
ESC combined with number 2 'H' 0x48
ESC combined with number 3 'L' 0x4C
ESC combined with number 4 'E' 0x45
ESC combined with number 5 'M' 0x4D
ESC combined with number 6 'N' 0x4E
ESC combined with number 7 'O' 0x4F
ESC combined with number 8 'P' 0x50
Number key '0' '0' 0x30
Number key '1' '1' 0x31
Number key '2' '2' 0x32
Number key '3' '3' 0x33
Number key '4' '4' 0x34
Number key '5' '5' 0x35
Number key '6' '6' 0x36

Number key '7' '7' 0x37
Number key '8' '8' 0x38
Number key '9' '9' 0x39
Decimal point key '.' 0x2E
Minus key ' ' 0x20
ESC combined with minus key '.' 0x2E
ENTER key CR 0x0D
- 77 -

Manual operating panels
8 Intercontrol DIGSYplus
The Intercontrol DIGSYplus control can be con-
nected to the operating panel via the COM-SP in-
terface. The operating panel affects the data
transfer via the interface. You only need to file the
necessary pointer and variable data in the PLC -
the access occurs parameterized from the operat-
ing panel. Therefore you do not need to provide a
"transfer program code" in your PLC-program.

8.1 Principle function of the driver
The data areas are parameterized in the editor ITE
to which the operating panel is to access. It is not
necessary to assign each individual message or
variable. A kind of initial address is indicated for
the individual data and then the space ("offset") to
this initial address is indicated via the handle
number.
The operating panel provides now that a perma-
nent data exchange takes place with the message
pointers ("word bits") and the nominal/actual val-
ues indicated currently in the image. This is done
without the help of the PLC.
The driver allows the following functions:
• Image call-up (also PRIO images!) via word

bits
• Message call-up via word bits
• Actual value display from pointer words
• Nominal value entry in pointer words
• Key and touch screen query via word bits
• Switching on and off LED via word bits
• Influencing the panel status
• Access to the CAN-bus which can be con-

nected to the operating panel ("Gateway")

8.2 Basic considerations
You must first plan where you set up the data for
the operating panel in the PLC. Observe the fol-
lowing specifications for this:
• Image and message call-ups as well as key-

and LED-functions are handled via word bits
(in pointer words). The operating panel needs
a related area for all these functions. Reserve
thus a block of relevant pointer words.

• Images and messages have to be numbered
continuously starting from 1 if image/message
call-ups occurs via pointer. The editor allows,
however, gaps, but when using the Intercon-
trol-driver you have to pay attention to a "com-
plete" creation.

• The sequence on how the functions are con-
verted to pointer words is always the same.
You can indicate how many pointer bytes per
function are to be used.

• It is always preceded in pointer byte steps (8
pointers) per function

• The sequence is always as follows:
- pointer for LED control
- pointer for image call-up
- pointer for priority images
- pointer for messages

• Maximum 256 pointers (=16 pointer words) for
image/message call-ups can be used (sum!). If
this is not sufficient then further call-ups can
be made via the "Gateway"-function.

• Maximum 320 pointers are needed for these
functions (256 for image/message call, 64 for
LED control)

• Nominal- and actual values (variables) are
also exchanged via pointer words. It is possi-
ble to parameterize a commonly used pointer
word area for nominal values, actual values
and limits.

• The handle is added to the parameterized
value of the data index ("offset"). If you there-
fore read here something about handle, then
this is synonymous to "pointer word-offset". Of
course you can adjust the initial address for all
data types equally. It is anyway the simplest if
you adjust respectively the address 3FE for
the pointer word (except status - more later on
this). Because then the handle number which
you adjust for variables is identical with the
pointer word number. Thus you see immedi-
ately with the help of the handle number to
which pointer word (or the operating panel)
you access.

• All variables with a length of 1-16 bits are allo-
cated automatically an entire pointer word

• Variables with a length of 32 bits are allocated
two successively pointer words. This has to be
considered with the placement of handles.
Example:If a Longword-variable has the han-
dle 6, then it is allocated automatically two
pointer words (e.g. MW6 and MW7). Thus no
variable with the handle 7 should be used.

• Due to driver restrictions on the SP-interface
no variables of the same type (nominal values,
actual values, upper-/ lower limit) may be used
within an image whose handles have more
then 32 differences. Example:If the smallest
handle of nominal values amounts to 10 in the
image, then the largest handle of nominal val-
ues may amount only to 42 in the image. An
actual value may have now again e.g. the han-
dle 90, since it belongs to another type. The
"handle difference" may, however, not again
be larger than 32 within the actual values.

IMPORTANT !!! All fields of the parameter mask
must be filled in. Thereby a pointer word address
must be indicated for each function, even if the
function is not used. Otherwise no communication
takes place.
- 78 -

Manual operating panels

In practice it is shown that these rules are very
simple to handle, since the parameterization of the
driver and the variables is possible to do in a very
comfortable manner.
You can/must parameterize individually the follow-
ing data types:
• Actual values (P1 in the register card)
• Nominal values (P5 in the register card)
• Lower limits (P6 in the register card)
• Upper limits (P7 in the register card)
• Step-values (P8 in the register card)
• Status information (P2 in the register card)
• Image/message call-ups, LEDs (P3 in the reg-

ister card)
• Keys (P4 in the register card)

8.3 Parameterization of the driver
You reach the parameter mask for the driver via
the menu "panel"/"parameterize", register card
"serial interface". Click the button "other driver".
The following mask appears then:

Enter IC" (for InterControl) in the field behind the
selection "other driver".
The fields P1 to P8 are fed with absolute address-
es (indication hexadecimal) for different task are-
as. The addresses computes to:

MW address = 1024 + (pointer word number-1)*2

Example: the pointer word 1 has the address
1024+(1-1)*2 = 1024 = 400hex

Example: the pointer word 50 has the address
1024+(50-1)*2 = 1122 = 462hex

The fields mean:

8.3.1 P1:Basis address for actual values
This setting indicates from which pointer word the
actual value variables from the PLC are read. The
handle of the variable is each added to this ad-
dress. So up to 256 actual values can be "ad-
dressed". Example: if you have entered as basis
address 400(hex), then the variable with handle 0
corresponds to MW1, variable with handle 1 to
MW2 etc.
Tip: If you use 3FE (hex) as initial address, then
the handle number corresponds exactly to the MW
number. But you may not use then the handle 0.
MW0 does not finally exist....

8.3.2 P2:Basis address for status info
Here you indicate the address of the pointer word
from which the status information of the operating
panel is filed. 22 pointer words are needed for this.
Also the Gateway-buffer belongs to this area.

8.3.3 P3:Basis address for LED and calls
This field must contain the initial address for the
LED-pointer, image- and message call pointer
("word bits"). The number of the necessary pointer
words is dependent on the parameterization of the
fields S1 to S4.

8.3.4 P4:Basis address for key pointer
The operating panel announces pressed keys bit
for bit into the PLC. Here you can indicate the ad-
dress of the pointer word from which the key point-
ers are filed. You parameterize the number of the
pointers via the field S5.

8.3.5 P5:Basis address for nominal values
Parameterization like P1

8.3.6 P6:Basis address for lower limits
Parameterization like P1

8.3.7 P7:Basis address for upper limits
Parameterization like P1

8.3.8 P8: Basis address for step values
Parameterization like P1

8.3.9 Field S1
In this field you parameterize how many pointer
words you want to use for the image call-up. It
must be observed here that the entry has to be
done decimally and is expected in double steps. If
you want to thus parameterize 2 pointer words =
32 image-pointers (32 word bits), then enter
please a 4. Note: this corresponds to the images
1-32.
- 79 -

Manual operating panels

8.3.10 Field S2
In this field you parameterize how many pointer
words you want to use for the message call-up. It
must be observed here that the entry has to be
done decimally and is expected in double steps. If
you want to thus parameterize 1 pointer word = 16
message-pointers (16 word bits), then enter
please a 2. Note: this corresponds to the messag-
es 1-16.

8.3.11 Field S3
In this field you parameterize how many pointer
words you want to use for the image call-up. It
must be observed here that the entry has to be
done decimally and is expected in double steps. If
you want to thus parameterize 1 pointer word = 16
image-pointers (16 word bits), then enter please a
2. Note: this corresponds to the images 1-16.

8.3.12 Field S4
In this field you parameterize how many pointer
words you want to use for the control of the LEDs
of the operating panel. It must be observed here
that the entry has to be done decimally and is ex-
pected in double steps. If you want to thus param-
eterize 1 pointer word = 16 LED-pointers (16 word
bits), then enter please a 2. Note: this corresponds
to the LEDs 1-16.

An example of this:
If you have indicated the pointer word MW 1 (ad-
dress 400 hex) as basis for image/message call-
up and fill in the fields S1 to S4 as in the table, then
the word bits are as follows:

The operating panel reads out these pointer words
cyclically and classifies the pointers individually as
call-ups.

In order to display e.g. an image, you simply place
the appropriate pointer in your PLC-program (just
like an output) - and the image appears on the op-
erating panel. It does not function any simpler.

8.3.13 Field S5
Here you have to indicate how many keys are to
be mirrored in the pointer.
An indication in double steps is to be expected. A 2
means that 16 key pointers / 1 pointer word are used.
Additionally 4 pointer words are hanged up in
which you can bring in free arbitrary data from the
operating panel. And, namely, the internal varia-
bles with handles 1000 and 1001 have been ex-
panded for this task.
The values of this variable appear in the 4 pointer
words which follow after the pointer words indicat-
ed for the keys.
An example: If you have indicated MW32 as point-
er word for keys (address 440 hex) and indicate 2
in the field S2, then the keys appear as word bits
in MW32; in MW33/MW34 the value of the internal
variable with handle 1000 and in MW35/MW36 the
value of the internal variable with handle 1001.
So you have the possibility e.g. when using the
touch-screen to use individual bits for individual
touch keys.

Note:
These pointer words are described with coinci-
dental values if the internal variables 1000 and
1001 are not project-planned. Thus do not use
them under any circumstances.

Another example:
You use an ITS6204 with 32 keys in total. You want
to have mirrored all keys in the PLC as pointers.
Thus you have to reserve 4 pointer bytes. You
want to use WB10.1 to WB11.16 as pointer area.
Enter the following entries into the parameter
mask:

Observe that MW12/13 and MW14/15 are re-
served for the variable values of the variables
1000 and 1001.

Now the operating panel mirrors the keys into the
pointers. The pointers mean now:

Field
/val-
ue

Pointer word/
word bits

Bits correspond to

S1/2 MW1/
WB1.1 to WB1.16

LEDs 1 - 16

S2/4 MW2, MW3/
WB2.1 to WB3.16

Images 1 - 32

S4/2 MW4/
WB4.1 to WB4.16

Prio-images 1 - 16

S3/4 MW5, MW6/
WB5.1 to WB6.16

Messages 1 - 32

Field Entry
P4 414
S5 4

Pointer = Key No.
WB10.1 1 (1. row, on the left)
WB10.2 2
... ...
WB10.8 8 (1. row, on the right)
WB10.9 9 (2. row, on the left)
....
WB11.16 32 (4. row, on the right)
- 80 -

Manual operating panels

Numeric block at ITS6100:
If the numerical keys of the ITS6100 are to be que-
ried as well, then 4 pointer words (=64 pointers)
have to be reserved for the key query. The first 48
pointers are always assigned to the function keys.
The numeric block is transferred from the 49.
pointer.
The numeric keys are then to be found under the
key numbers according to the following table (Ex-
ample: MW17/addr. 420 hex as basis):

The pointers for the keys 49 (WB20.1) and 56
(WB20.8) are always placed with 0, please do not
use these pointers further.
The function keys at the ITS6101 have the key
numbers 1-8. If the ITS6106 is used (maximum ex-
tension), then the function keys are numbered
from 1-48. Therefore the numeric keys are mir-
rored into the PLC from key number 50.

8.4 Status data index
The operating panel keeps the PLC informed con-
cerning operator actions via the status data index.
It files which image and which message are just
being displayed and in which operating status it is
at the moment.
But also further functions are actuated via this sta-
tus area. You have access to the CAN-bus which
can be connected at the operating panel. Besides,
you can influence panel parameters such as con-
trast and brightness via the status area.

The indication of pointer words which have been
made in the following description refer always as
offset to the basic index which you have entered in
the field "P2" of the parameter mask (Example: If
MW+2 stands in the text and you have indicated in
the field "status" MW10, then it is the "real" index
MW10+2). The following table inform about the
use of data words in the status area:

8.4.1 Panel status information
The operating panel informs the PLC according to
standard about the following data words with the
contents specified in the table (reference field P2):

Key Key no. for basis M0
Escape 50 WB20.2
"4“ 51 WB20.3
"6“ 52 WB20.4
"2“ 53 WB20.5
"8“ 54 WB20.6
Enter 55 WB20.7
"0“ 57 WB20.9
"1“ 58 WB20.10
"3“ 59 WB20.11
"5“ 60 WB20.12
"7“ 61 WB20.13
"9“ 62 WB20.14
".“ 63 WB20.15
"+/-“ 64 WB20.16

Data index Function
MW+0 to MW+9 Panel status of the op-

erating panel
MW+10 to MW+15 Transmission buffer for

CAN-Gateway
MW+16 to MW+21 Receive buffer for

CAN-Gateway

Data
index

Contents of the data index

MW+0 Image number of the currently dis-
played image

MW+1 Message number of the currently
displayed message (0=no mes-
sage is displayed)

MW+2 Panel status. See list under
TA=0x0A

MW+3 Number of the active images
MW+4 Number of the active messages
MW+5 Seconds and minute, BCD-encod-

ed
MW+6 Hours and weekday, BCD-encod-

ed
MW+7 Day and month, BCD-encoded
MW+8 Year 4-digit, BCD-encoded
MW+9 not allocated, reserved
- 81 -

Manual operating panels

8.4.2 CAN-Gateway transmission buffer
The data words DW+10 to DW+15 of the status
DBs are allocated as follows (reference field P2):

Handshake via MW+10:
A tuning between PLC user program and the oper-
ating panel/CAN-bus takes place via MW+10. First
it has to be checked whether MW+10=0. Then the
data are entered in MW+11 to MW+15 and after-
wards (!) MW+10 is set to 1.
Thereby it can be prevented that the PLC outputs
too quickly data to the CAN-bus (or the operating
panel itself).

Telegram type and function words:
The telegram type and the function words are de-
pendent on the addressee in MW+11:

8.4.3 CAN-Gateway receive buffer
Before you want to access too enthusiastically to
the CAN-bus: take into account that a transfer rate
of up to 1 MBit/s can be adjusted on the CAN-bus.

On the PG-interface 9600 bauds are adjusted firm-
ly of which approx. 75% for the log have to be
counted. Thus there remain net approx. 2400
bauds.
If now a CAN-module relocates a telegram only 10
times per second, then the receive buffer ought to
be written into the PLC 10 times per second, and
at the same time the pointer-bytes and the varia-
bles to be read out - impossible!
Therefore why the whole thing?
Consider that e.g. one operating keyboard
ITS6300 can be connected to the operating panel
via the CAN-bus. Somehow you ought to be in-
formed when a key is pressed on the ITS6300 -
and this functions only via the operating panel.
And to tell you the truth: so simply you can connect
no other keyboards to the PLC as over the CAN-
bus.
The ITS6300 transmits now each time a CAN-
news to the operating panel if a key is pressed.
The operating panel files then this telegram in the
receive buffer.
Realistically seen, an operator will press a key
only 2-3 times per second. The operating panel
can buffer key entries possibly in a FIFO-buffer
with 20 telegrams depth.
If you signalise the operator via a LED that his key
stroke has been registrated, then he will not begin
to hammer like mad on the keyboard.
But now to the description of the data index of the
receive buffer. Also the receive buffer has a hand-
shake index available with whose help the data
transfer is controlled as well as the information
bytes:

Transmissions from the operating panel:
MW+17=0
Currently no telegrams from the operating panel
are defined at the PLC. All functions are handled
via pointer and data components.

Data word Function
MW+10 Handshake.0: Transmission

buffer free otherwise transmis-
sion buffer allocated

MW+11 CAN-identifier
Here the user program must
enter the addressee. Address 0
is the operating panel itself.

MW+12 CAN user data D0/D1
MW+13 CAN user data D2/D3
MW+14 CAN user data D4/D5
MW+15 CAN user data D6/D7

MW+11=0
Data for the operating panel
at the PG-interface

MW+11<>0
(Data are deter-
mined for the
CAN-bus)

MW+12
CAN user data correspond-
ing to the description of
CAN telegrams

MW+12 KH=bbaa
aa = D0
bb = D1

MW+13
CAN user data correspond-
ing to the description of
CAN telegrams

MW+13 KH=ddcc
cc = D2
dd = D3

MW+14
CAN user data correspond-
ing to the description of
CAN telegrams

MW+14 KH=ffee
ee = D4
ff = D5

MW+15
CAN user data correspond-
ing to the description of
CAN telegrams

MW+15 KH=gghh
gg = byte6
hh = byte7

Data
index

Function

MW+16 Handshake.
0: Receive buffer empty
otherwise data in the buffer

MW+17 CAN-identifier
Here the user program in the PLC
receives the address of the trans-
mitter.
Address 0 is the operating panel it-
self.

MW+18 CAN user data D0/D1
MW+19 CAN user data D2/D3
MW+20 CAN user data D4/D5
MW21 CAN user data D6/D7
- 82 -

Manual operating panels

Transmission from the CAN-bus: MW+17<>0:
In this case the CAN telegram of the transmitter is
written on a one to one basis into the receive buff-
er. Thus the bytes are filed as follows:

The contents of the CAN telegram is dependent on
the panel which has sent the telegram. Look up
therefore in the manual regarding this panel if you
have to determine the contents of the telegrams.

8.4.4 CAN-identifier MW+11 and MW+17
The CAN-identifier composes of totally 16 bits.
The individual bits have the following meaning:

In the bits 0-3, DLC (data length code) it is indicat-
ed how many bytes of user data the CAN telegram
contain. This value can be 0 to 8. A CAN telegram
can contain maximum 8 bytes of user data.
The RTR-bit (R) is currently not used. Place it thus
on 0.
The ID-bits 0-10 must contain the number of the
panel. These are placed mostly via DIP-switch or
jumper. Further details can be obtained from the
manual of the respective panel.

Data
index

Contents

MW+17 CAN-identifier (transmitter ad-
dress)

MW+18 CAN user data KH=bbaa
aa = D0
bb = D1

MW+19 CAN user data KH=ddcc
cc = D2
dd = D3

MW+20 CAN user data KH=ffee
ee = D4
ff = D5

MW+21 CAN user data KH=hhgg
gg = D6
hh = D7

15-5 4 3-0
Identifier R DLC
x x x x x x x x x x x x 1 0 0 0
- 83 -

Manual operating panels
9 Configurating CAN-modules

9.1 Starting the module-configurator
The integration of CAN-modules is carried out with
a configuration program which you can call up
from the editor.

Use the button or the menu option "configu-
rating programs"/"CAN-modules" for this.
But you must have saved the started project al-
ready beforehand.
The program answers with the following window:

Now you can set up, configurate and delete CAN-
modules in this program. You can define likewise
input and output functions. You cannot carry out
logical links - use the control program for this.

9.2 Creating CAN-module
After you have started the CAN-configuration pro-
gram, first you will have
not any modules yet. If you call-up the menu op-

tion "module"/"new", press the button , then

you receive a list of the modules which

are known at the moment:

It involves here the basic module-mask. If you in-
sert extension modules of the type GCM 205 or
GCM 206: these are adjusted later. Select here
the basic module.

9.2.1 Field "Name of the module"
You may enter into the field "name of the module"
what you want. Do not leave the field empty, but
allocate a respective name like e.g.: "temperature
measurement cold-store" or "message coverage
control-cabinet". It is easier to find the modules
then again.

9.2.2 Field "Node-No.:"
Enter the node number of the module into this
field. The node number is adjusted at the module
via the DIP-switches 1-5. (See above)

9.2.3 Field "Type of the module"
Select here the type of the basic module which you
insert as module at this address.
To finish off, press "OK", and then the module is
taken over into the project.

9.3 Configurating a CAN-module
If you want to configurate a module it has first to be
created via "module new" - see previous section.
If a module is created in the project, then further
buttons appear in the editor and the
menu option "configurating module" is selectable.

The button also calls up the following selec-

tion mask like "configurating module":

- 84 -

Manual operating panels
In this selection mask the names are displayed
which you have given when creating the modules
(therefore you should indicate another name!).
Mark the module which you want to process and
press "OK". Dependent on the module type, you
receive then a configuration mask with different
possibilities.

9.3.1 Module series GCM 200
Here you receive a configuration mask with 4 reg-
ister cards:

The register cards have the following content.

9.3.1.1 Register card "settings"
Here the basic settings of the module are carried
out. The fields have the following meaning:

Module name
You have seen this one already when creating the
module. Here you can correct it, if necessary.

Node-address
Here you enter the node number (address) of the
module.

Query interval...(poll-time)
There are different settings for when and how a
module announces its I/O-data on the bus. With
this poll-time you can instruct the master (thus the
operating panel) to request cyclically in ms the I/O-
data from the module. Here the master is the one
that releases the data transfer. If you enter 0, then
the data is not requested from the master in inter-
vals, but the module must transmit its data itself.
In the most cases, you can maintain the setting of
500 ms.
The poll-time is therefore also used to carry out a
refresh of the outputs of the module. The outputs,
however, are always immediately written if they
are changing. But a module could have wrong out-
put data with power failure or a fault through EMC.
However, it is achieved through the poll-time that
after this time at the latest all outputs are posi-
tioned how they have to.

Cycle time (event)
You determine with this setting whether the mod-
ule shall transmit independently its entire data
within certain intervals. If you mark the field "acti-
vating automatic transmitting" with a cross, then
you can adjust the requested interval in the field
"cycle time" which appears then.
You can use both settings poll-time and cycle time
at the same time; this is however only useful if the
module has outputs (output-refresh!). We recom-
mend using only one of the possibilities, whereby
the poll-time should be used with output modules.
But you can treat each module differently.

9.3.1.2 Register card "module removal"
Here you must indicate which type of expansion
modules and how many of them are present at the
basic module. You have here the complete selection:
- 85 -

Manual operating panels

9.3.1.3 Register card "input function"
In this register card you see a table which contains
the input functions of the I/O-module. You can as-
sign several functions to each input. Thus you
could e.g. call up a message and count up a vari-
able when a positive flank arrives and deliver the
message again if a negative flank arrives. This
function assignments are contained in the table of
this register card, sorted according to input. And
this is how the register card is presented:

The first column of the table contains the input
number. Counting begins with 0. In the second col-
umn the function in a number is displayed encod-
ed and column 3 contains information dependent
upon column 2.
The numbers mean:

In column 4 it is indicated when the function is to
be carried out:

The indications in the table can be modified direct-
ly in the table or by double-click in the respective
line. You receive then a setting-mask for the ap-
propriate function (see "possible input functions"
further below).

Button "add"
With this button you can call up an input mask with
which you can determine the input function inter-
actively. See "possible input functions"

Button "deleting"
With this button you can delete the function line
marked currently in the table.

Button "variables"
This one calls up the table for processing the vari-
ables. This is described in more detail in the chap-
ter "variables".

No./function column 2 Meaning col-
umn 3

0 Call up message Message
number

1 Deliver message Message
number

2 Call up image Image number
3 Call up priority image Image number
4 Deliver image Image number
5 Display variables (input

is transferred to variable)
Handle

6 Increment variable Handle
7 Decrement variable Handle
8 Delete variable Handle

Column 4 Function is ...
P ... carried out with positive flank
N ... carried out with negative flank
B ... carried out with both flanks
- 86 -

Manual operating panels

Button "input behaviour"
With this button you receive an input mask which
shows the module with inputs and outputs:

For each input there are 3 options:

Filter (appears sometimes only as F)
Only signals are announced which are pending
longer than 6 ms (de-buffer)

P (positive flank)
If a positive flank is recognized, then the module trans-
mits immediately a data news to the bus, independent
of the settings "poll-time" and "cycle-time" in the regis-
ter "settings". Always all inputs are transferred.

N (negative flank)
If a negative flank is recognized then the module
transmits immediately a data news to the bus, in-
dependent of the settings "poll-time" and "cycle-
time" in the register "settings". Always all inputs
are transferred.
We recommend that you activate all 3 options with
the used inputs. Thus you receive the quickest
possible signal transfer.

Button "copy input function"
Imagine you have an input module with 40 inputs.
You want to put now the functions "call up mes-
sage at positive flank" and "deliver message at
negative flank" on each input. 80 functions result.
This button enables you to transfer all functions de-
fined on one input to other inputs; and thus also the
number of the message (of the message or the vari-
able handle) is increased automatically for the copy.
This facilitates the work with extensive projects.

Possible input functions
If you double-click in the table or press the button
"add", then you receive the entry mask for the in-
put function. In this mask, you can determine very
comfortably a function for an input. You can deter-
mine also several functions per input, this must
however be done one after the other. The mask
has the following setting possibilities:

Select first the input number in the field "input
number". In the field "function", you adjust the
function. Dependent on the function, the fields
"flank" and "message/image-no." can modify. This
can be seen when using it; this function supports
you with the input.

Numbering of the inputs
Counting is done starting from "0" (!), whereby "0"
is the first input on the first module part starting
from left.
It continues then with the expansion modules,
where first the upper, then the lower terminal is
counted at each module.

Example:
You have at a GCM 201 with a GCM 205 the in-
puts 0-7 at the basic module GCM 201, the inputs
8-15 at the upper terminal of the GCM 205 and the
inputs 16-23 at the lower terminal of the GCM 205.
The numbering is respectively from the left to the
right.

For consideration
If you want to achieve that an image or a message
is to be active as long as until the input is pending,
then you have to parameterize two functions: One
which calls up the message or image with positive
flank and delivers again with negative flank.

9.3.1.4 Card "output functions"
The functions are displayed tabularly in this regis-
ter card, which are assigned to the outputs of the
module:

- 87 -

Manual operating panels
The output number is displayed in the first column.
Column 2 contains the function number and col-
umn 3 the variable handle.

The following functions are available:

You achieve the input mask for output functions with
the button "add" or by double-click on a table line:

9.3.2 Module series GCM 300
This module series can process 4 equivalent in-
puts per module. If you configurate such a module
it is done via the following mask:

9.3.2.1 Register card "settings"
These settings are the same as with the digital I/O-
modules of the series GCM 200. Look up further
above in this chapter.

9.3.2.2 Card "input functions"
Here the input functions created by you are listed
tabularly. You receive the input-parameterize
mask "analogue input" by double-clicking into a
function line in the table. But you don't have much
selection; there are only few options. Only "trans-
fer input in variable" is available as input function;
you can only indicate to which variable the input
value is to be transferred. You must carry out a
scale in KOP, you cannot do it here. Also the mon-
itoring of limit values can be made solely in the
control program.
The inputs are numbered from 0-3 from left to right
at the input terminal.

Button "add"
With this button you add a further input function.
You receive the input-parameterize mask "ana-
logue input" as shown further below.

Button "deleting"
The function line marked in the table is deleted.

Button "variables"
This button calls up the variable table that is gen-
erally known and described in chapter 7.

No. Function
0 The bit No. 0 of the specified variable is

copied into the output. That means the
output is switched on if the variable has
an uneven value.

1 The lowest-grade 8 bits of a variable are
transferred into 8 outputs. Use for this func-
tion only the output numbers 0, 8, 16 and 24.

2 The lowest-grade 16 bits of a variable are
transferred into the 16 outputs. Use only
the output numbers 0, 8 and 16 for this.

3 The output is switched on as long as until
the variable is unequal to 0.
- 88 -

Manual operating panels

Parameterize mask "analogue input"
The configuration mask has - dependent upon the
type of the module - the following image:

Depending upon type of the input module, you can
select whether you want to activate an automatic
average-value formation via the last 5 measuring
values and whether you want to connect a 0-20
mA or a 4 - 20 mA transducer.
A scaling of the input values must be made via
KOP. The following indications can be consulted
for this:

Range of the inputs
Modules of the series GCM300 deliver the follow-
ing area as variable value:

0 = 0 µA; 1 = 5 µA; ...; 4000 = 20 mA
Therefore: Iin= variable value x 5 µA

Modules of the series GCM300 deliver the follow-
ing area as variable value:

0 = 0 mV; 1 = 2,5 mV; ...; 4000 = 10 V
Therefore: Vin= variable value x 2,5 mV

Modules of the series GCM302 deliver the follow-
ing area as variable value:

0 = -50°C; 1=-49,75°C; ...; 4000 = 950°C
Therefore: Tin= variable value x 0,25°C - 50°C

Modules of the series GCM303 deliver as varia-
ble value

1600 = 0°C; 1601 = 0,5°C; ...; 3600 = 1000°C
Therefore: Tin= (variable value-1600) x 0.5°C

9.3.2.3 Module series GCM 400
There are 4 similar analogue outputs 0-20 mA or 0-
10V each at the module series GCM 400.. These
modules are configurated via the following mask:

The outputs of the module are always written at that
time when they are changing. But you can determine
additionally via the poll-time how often the outputs
are to be written independent from modifications.

9.3.2.4 Register card "settings"
The settings in this register card are identical as
with the modules GCM 200 and GCM 300. But
there are still specific features:

Poll-time:
The poll-time is used here as output-refresh-inter-
val. That means this time indicates in which inter-
vals the output values of the module are
transmitted from the master of the output module.
The output module transmits as confirmation the
output values as data telegram so that an operating
panel-slave can likewise display the output values.

Cycle time
Only if an operating panel is connected as slave
can the output data be of interest and then be con-
tinuously updated via the cycle time.

9.3.2.5 Card "output functions"
The output functions are listed in tabular form in
this register card. Normally you have one function
per output; namely the data output of a variable
value to the output.
In the first column stands the output number, in the
second the function number (here always 2, that
means the data output of the lower-grade 16 bit of
a variable) and in the third the handle of the varia-
ble. A double-click on a table line opens the config-
uration window for the appropriate line (see below)
- 89 -

Manual operating panels

Button "add"
If you press this button you must add a new output
function. You receive the mask "analogue output".

Button "deleting"
The function line marked in the table is deleted
(and thus the assignment of a variable to the out-
put).

Button "variables"
Here you arrive again in the known variable table.

Mask "analogue output"
Here you can assign a variable to an output:

A scaling of the data must be made with KOP. The
information necessary for this is:

Range of the outputs
Modules of the series GCM400 require the follow-
ing area as variable value:

0 = 0 µA; 1 = 5 µA; ...; 4000 = 20 mA
Therefore:Iout= variable value x 5 µA

Modules of the series GCM401 require the follow-
ing area as variable value:

48 = -10 V; ...; 2048 = 0V; ...; 4048 = 10 V
Therefore: Vout= (variable value-2048)x2,5 mV-
10,24V
- 90 -

Manual operating panels
9.4 Removing CAN-module
If you want to remove a module, then use the but-

ton or the menu entry

"Deleting module". Mark the module in the selec-
tion list which appears now

and press"OK".

9.5 Copying module
If you have several modules where you want to set
up the same function (e.g. registration call ups or
image call ups), then you can copy a module com-
pletely.
Select the button or the menu point "copying
module" for this. Then a list appears from which
you can select the module that is to be copied:

Mark the requested module and click on "OK".
Then a further mask is displayed. This corre-
sponds to the configuration mask for the indicated
module. Here the I/O-functions of the source mod-
ule are already indicated in the tables and the in-
put behaviour has also been taken over. You have
now only to still adapt image or registration num-
bers and variables.

- 91 -

	1 Communication
	1.1 Introduction
	1.2 Telegram formats
	1.2.1 Structure of the CAN telegrams
	1.2.2 Structure of the serial telegrams
	1.2.3 Structure of the user data

	1.3 Telegram types according to category
	1.3.1 Image- and message call-up
	1.3.2 Keys and LEDs
	1.3.3 Variables
	1.3.4 Status
	1.3.5 Log/statistics
	1.3.6 Memory/text transfer
	1.3.7 Cursor positioning
	1.3.8 Others

	1.4 Description of the telegram types
	1.4.1 REQUEST_VALUE (0x01)
	1.4.2 SET_VALUE (0x02)
	1.4.3 REPORT_VALUE (0x03)
	1.4.4 MESSAGE_ON (0x04)
	1.4.5 MESSAGE_OFF (0x05)
	1.4.6 PAGE_ON (0x06)
	1.4.7 PAGE_OFF (0x07)
	1.4.8 REQUEST_PRIORITY (0x08)
	1.4.9 REQUEST_STATUS (0x09)
	1.4.10 REPORT_STATUS (0x0A)
	1.4.11 ENABLE_REPORT_STATUS (0x0B)
	1.4.12 DISABLE_REPORT_STATUS (0x0C)
	1.4.13 REQUEST_MEMORY_WRITE (0x0D)
	1.4.14 DISABLE_WRITE (0x0E)
	1.4.15 WRITE_MEMORY (0x0F)
	1.4.16 REQUEST_MEMORY_READ (0x10)
	1.4.17 REPORT_READ_MEMORY (0x11)
	1.4.18 RESET (0x12)
	1.4.19 ACKNOWLEDGE (0x13)
	1.4.20 REPORT_ERROR (0x14)
	1.4.21 WRITE_PARAM (0x15)
	1.4.22 SET_LED (0x16)
	1.4.23 REPORT_KEY_DATA (0x17)
	1.4.24 REQUEST_VERSION (0x18)
	1.4.25 REPORT_VERSION (0x19)
	1.4.26 REQUEST_CLOCK (0x1A)
	1.4.27 REQUEST_RUNTIME (0x1B)
	1.4.28 REQUEST_INTERN_VARIABLES (0x1C)
	1.4.29 WRITE_CLOCK (0x1D)
	1.4.30 REPORT_CLOCK (0x1E)
	1.4.31 REPORT_RUNTIME (0x1F)
	1.4.32 ASCII_TELEGRAM (0x20)
	1.4.33 REQUEST_PROTOCOL (0x21)
	1.4.34 REQUEST_STATISTIC (0x22)
	1.4.35 REPORT_MENU_INDEX (0x25)
	1.4.36 REPORT_OUTPUT_STATE (0x26)
	1.4.37 REQUEST_CURSOR_POSITION (0x27)
	1.4.38 WRITE_CURSOR_POSITION (0x28)
	1.4.39 EXECUTE_MENU (0x29)
	1.4.40 REPORT_CURSOR_POSITION (0x2A)
	1.4.41 MENU_ON (0x2B)
	1.4.42 CAN_INIT (0x2C)
	1.4.43 SET_KEYBOARD_LAYOUT (0x15)
	1.4.44 DRAW (0x2E)
	1.4.44.1 Panels of the ITS series
	1.4.44.2 Panels of the AT series

	2 CAN-bus
	2.1 Wiring
	2.1.1 Bus structure (topology)
	2.1.1.1 Line connections
	2.1.1.2 Bus cable
	2.1.1.3 Line lengths

	2.1.2 Terminating
	2.1.3 Addressing

	2.2 Logs in general
	2.2.1 SELECAN-log
	2.2.1.1 Structure of the identifier
	2.2.1.2 Identifier table in the SELECAN-log

	2.2.2 Telegram contents
	2.2.3 Operating panel to SELECAN-PLC
	2.2.3.1 Control --> ITS
	2.2.3.2 ITS-6000 --> control

	2.2.4 Using GCM-modules
	2.2.4.1 Prerequisites
	2.2.4.2 Master-slave-configurations
	2.2.4.3 Adjusting the CAN-modules
	2.2.4.4 Assignment of panel addresses/ identifier
	2.2.4.5 Actuate modules from the internal control program

	2.2.5 Free CAN-log
	2.2.5.1 Structure of the identifier
	2.2.5.2 Telegram contents

	2.2.6 CANopen-log
	2.2.6.1 Basic behaviour as SLAVE
	2.2.6.2 Basic behaviour as MASTER
	2.2.6.3 Identifier table of CANopen

	2.2.7 Mixing of logs

	3 CAN-Open driver
	3.1 Requests
	3.1.1 Operating system (TOS)
	3.1.2 Firmware (BIOS)
	3.1.3 Project planning software (Editor ITE)
	3.1.4 Settings in the ITE
	3.1.5 Field ITS-CAN configuration
	3.1.6 Field node number
	3.1.7 Field guard-time
	3.1.8 Field time window
	3.1.9 Display fields Download-ID's
	3.1.10 Field interval time for call...
	3.1.11 Field minimum waiting time

	3.2 MASTER-implementation
	3.2.1 Minimum network management
	3.2.1.1 Master Boot-up
	3.2.1.2 Slave Boot-up (Version 4.0)
	3.2.1.3 Slave Boot-up (RFC to version 3.0)

	3.2.2 Transmitting and receiving of SDOs
	3.2.2.1 Transmitting/requesting SDO data
	3.2.2.2 Query SDO-answer

	3.2.3 Example:Transmit SDO
	3.2.4 Example:Read SDO
	3.2.5 Transmitting and receiving of PDOs
	3.2.5.1 Transmitting PDOs
	3.2.5.2 Receiving PDOs

	3.2.6 Project download
	3.2.7 Object directory
	3.2.8 Status transitions

	3.3 SLAVE implementation
	3.3.1 Status diagram
	3.3.1.1 Status transition table
	3.3.1.2 Description of the statuses
	3.3.1.3 Description of the telegram communi cation

	3.3.2 Object directory
	3.3.2.1 Object 1000h: Panel type
	3.3.2.2 Object 1001h: Error index
	3.3.2.3 Object 1004h: Number of the PDOs
	3.3.2.4 Object 1008h: Manufacturer: panel name
	3.3.2.5 Object 1009h: Hardware version
	3.3.2.6 Object 100Ah: Software version
	3.3.2.7 Object 100Bh: Node address
	3.3.2.8 Object 100Ch: Guard-time
	3.3.2.9 Object 100Dh: Time window
	3.3.2.10 Object 100Eh: Guard-identifier
	3.3.2.11 Object 100Bh: Number of the SDOs
	3.3.2.12 Object 1010h: Save parameter
	3.3.2.13 Object 1011h: Load parameter record
	3.3.2.14 Object 1014h: Identifier Emergency
	3.3.2.15 Object 1015h: Emergency waiting time
	3.3.2.16 Obj. 1016h:Expected heartbeat time
	3.3.2.17 Object 1017: Manufacturer's heartbeat
	3.3.2.18 Object 1018h: Identity object
	3.3.2.19 Object 1200h: Server SDO parameter
	3.3.2.20 Obj. 1400h: Receive PDO param.
	3.3.2.21 Obj. 1600h: Receive-PDO mapping
	3.3.2.22 Object 1800h: Transmission PDO parameter
	3.3.2.23 Object 1A00h: Transmission-PDO- mapping
	3.3.2.24 Object 2000h: Received data
	3.3.2.25 Object 2001h: Transmitting data

	4 SIMATIC S5 driver
	4.1 Principle function of the driver
	4.2 Basic considerations
	4.3 Parameterization of the driver
	4.3.1 Field actual values
	4.3.2 Field "nominal values"
	4.3.3 Fields "lower limits", "upper limits"
	4.3.4 Field "step values"
	4.3.5 Field "status"
	4.3.6 Field "image/message"
	4.3.7 Fields "number of the images, messages, priority images, LEDs"
	4.3.8 Field "keys"
	4.3.9 Field "number of the keys"

	4.4 Status data component
	4.4.1 Panel status information
	4.4.2 CAN-Gateway transmission buffer
	4.4.3 CAN-Gateway receive buffer
	4.4.4 CAN identifier DW11 and DW17
	4.4.5 " Examples for the Gateway

	5 Mitsubishi FX
	5.1 Principle function of the driver
	5.2 Basic considerations
	5.3 Parameterization of the driver
	5.3.1 Field actual values
	5.3.2 Field "nominal values"
	5.3.3 Fields "lower limits", "upper limits"
	5.3.4 Field "step-values"
	5.3.5 Field "status"
	5.3.6 Field image/message
	5.3.7 Fields number of the images, messages, priority images, LEDs
	5.3.8 Field keys
	5.3.9 Field number of the keys

	5.4 Status data index
	5.4.1 Panel status information
	5.4.2 CAN-Gateway transmission buffer
	5.4.3 CAN-Gateway receive buffer

	5.5 " Examples for the Gateway

	6 Request/response driver
	6.1 Interface description:
	6.1.1 Interface commands:
	6.1.1.1 Communication telegrams:
	6.1.1.2 Read telegram
	6.1.1.3 Write telegram

	6.2 General driver function
	6.2.1 Name agreements
	6.2.2 Basic considerations

	6.3 Driver parameterisation
	6.3.1 "Actual values" field
	6.3.2 "Nominal values" field
	6.3.3 "Lower limits", "Upper limits" and "Step values" fields
	6.3.4 "Status" field
	6.3.5 "Page/message" field
	6.3.6 "...x 8" fields
	6.3.7 "Keys" field
	6.3.8 "Number of keys" field
	6.3.9 Status data indexes
	6.3.10 Device status information
	6.3.11 CAN gateway send buffer
	6.3.12 CAN gateway receive buffer

	6.4 CAN identifier D11 and D17

	7 VT100 driver
	7.1 Configuration
	7.2 Description of the VT-100 control sequences
	7.2.1 Control character (receive)
	7.2.2 ESC sequences (receive)
	7.2.3 Key codes

	7.3 VT100 driver extensions
	7.3.1 ESC sequences (receive)
	7.3.2 Transmitted key codes

	8 Intercontrol DIGSYplus
	8.1 Principle function of the driver
	8.2 Basic considerations
	8.3 Parameterization of the driver
	8.3.1 P1:Basis address for actual values
	8.3.2 P2:Basis address for status info
	8.3.3 P3:Basis address for LED and calls
	8.3.4 P4:Basis address for key pointer
	8.3.5 P5:Basis address for nominal values
	8.3.6 P6:Basis address for lower limits
	8.3.7 P7:Basis address for upper limits
	8.3.8 P8: Basis address for step values
	8.3.9 Field S1
	8.3.10 Field S2
	8.3.11 Field S3
	8.3.12 Field S4
	8.3.13 Field S5

	8.4 Status data index
	8.4.1 Panel status information
	8.4.2 CAN-Gateway transmission buffer
	8.4.3 CAN-Gateway receive buffer
	8.4.4 CAN-identifier MW+11 and MW+17

	9 Configurating CAN-modules
	9.1 Starting the module-configurator
	9.2 Creating CAN-module
	9.2.1 Field "Name of the module"
	9.2.2 Field "Node-No.:"
	9.2.3 Field "Type of the module"

	9.3 Configurating a CAN-module
	9.3.1 Module series GCM 200
	9.3.1.1 Register card "settings"
	9.3.1.2 Register card "module removal"
	9.3.1.3 Register card "input function"
	9.3.1.4 Card "output functions"

	9.3.2 Module series GCM 300
	9.3.2.1 Register card "settings"
	9.3.2.2 Card "input functions"
	9.3.2.3 Module series GCM 400
	9.3.2.4 Register card "settings"
	9.3.2.5 Card "output functions"

	9.4 Removing CAN-module
	9.5 Copying module

